

ASP.NET Core 2 Fundamentals

Build cross-platform apps and dynamic web services with this server-side
web application framework

Onur Gumus
Mugilan T. S. Ragupathi

BIRMINGHAM - MUMBAI

ASP.NET Core 2 Fundamentals
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or
its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this
book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this
book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Acquisitions Editor: Koushik Sen
Content Development Editors: Edwin Moses, Rutuja Yerunkar
Production Coordinator: Ratan Pote

First published: August 2018

Production reference: 1300818

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-891-5

www.packtpub.com

http://www.packtpub.com/

mapt.io

Mapt is an online digital library that gives you full access to over 5,000
books and videos, as well as industry leading tools to help you plan your
personal development and advance your career. For more information,
please visit our website.

https://mapt.io/

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals
Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month
Mapt is fully searchable
Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.PacktPub.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at service@packtpub.com for
more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.

http://www.packtpub.com/
http://www.packtpub.com/

Contributors

About the authors
Onur Gumus works as a lead software engineer in Dubai UAE. He has 15
years of experience in .NET and web development. He is a functional
programming enthusiast and has completed many large projects with
ASP.NET.

Mugilan T. S. Ragupathi has been working on building web-based
applications using Microsoft technology for more than a decade. He is
active in the ASP.NET community and is running a successful blog,
“dotnetodyssey.com”, to help his fellow .NET developers. His free
beginners' course for ASP.NET MVC 5 at the above blog was well received
and is referred to as a concrete reference for beginners. He has also written
two free micro e-books, The 7 Most Popular Recipes of jQuery with
ASP.NET Web Forms and Value & Reference types in C#. His books have
received a good response.

He can be seen on csharp subreddit/Stack Overflow and is also an active
contributor to the ASP.NET community on Quora, going by the username
“Mugil-Ragu”. He likes to help readers with queries regarding ASP.NET.

Packt is searching for authors like
you
If you're interested in becoming an author for Packt, please visit authors.packt
pub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a
specific hot topic that we are recruiting an author for, or submit your own
idea.

http://authors.packtpub.com/

Table of Contents
Title Page

Copyright and Credits

ASP.NET Core 2 Fundamentals

Packt Upsell

Why subscribe?

PacktPub.com

Contributors

About the authors

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Conventions used

Get in touch

Reviews

1. Setting the Stage
Introduction to Web Applications

How Web Applications Work

What is the HTTP Protocol?

HTTP/2's Edge over HTTP/1.x

Request-Response Pattern

Stateless Nature of HTTP

Advantages to HTTP

Work with the Statelessness and the Request-Response Pattern

Client Side and Server Side

Programming Styles – RPC versus REST

Working with HTTP Methods

The GET Method

The POST Method

List of Important Methods

Other Methods

Activity: Working with the Request-Response Pattern

Introduction to ASP.NET

ASP.NET MVC

The Model-View-Controller Pattern

A File-Based Project

Creating Your First Project

Creating Your First Application

Summary

2. Controllers
Role of the Controller in ASP.NET MVC Applications

Ideal Flow of Data for a Layered Web Application

Introduction to Routing

Activity: Finding the Correct Method Invoked for a URL

Installing the ASP.NET Core NuGet Package in Your Application

Our First Controller

IActionResult

Activity: Implementing Your Own IActionResult

Adding Views

Adding Models

Passing Data from the Controller to the View

Filters

Activity: Writing a Custom Filter

Summary

3. Views
The View Engine and the Razor View Engine

The Razor View Engine

Programming in the Razor View Engine

Variables in the Razor View

Working with Razor View

Programming Constructs in the Razor View

Activity: Printing Prime Numbers from 1 to 100

Layout

Building our First Layout

Creating _ViewStart.cshtml

Creating _Layout.cshtml

Adding a Page-Specific View

Activity: Creating Another Layout and Changing the View to That Layo

ut

Generating HTML

Generating HTML using a Simple Form

HTML Helpers

Generating a form using HTML Helpers

Activity: Making Use of a Checkbox

Partial View

Calling a Partial View

Activity: Working with Static Data

View Components

Creating a View Component

Creating a ViewComponent Attribute

Activity: Passing a String as Additional Data

Tag Helpers

Custom Tag Helpers

Creating a Custom Tag Helper

Activity: Replacing Email Tag Helpers

Summary

4. Models
Introduction to Models

Creating an ASP.NET Core Application

Models Specific to a View Component

ViewModels

Data Flow with Respect to a Model

Activity: Revising the Code to Show Discount in the Total

Model Binding

Entity Framework

Creating Console Applications with Entity Framework

Installing Entity Framework Core NuGet Package

Using the NuGet Package Manager

Installing Entity Framework Commands

Creating Model Classes

Creating the DbContext Class

Creating a Migration

How the SaveChanges Method Works

Updating the Record

Deleting the Record

Activity: Controlling the Transaction Manually

Using Entity Framework in ASP.NET MVC Applications

Database Migration

Summary

5. Validation
Introduction to Validation

Client-Side and Server-Side Validation

Server-Side Validation

Updating ViewModels with the Data Annotation Attribute

Updating the ViewModel to Display the Validation Error Message

Updating the Controller Action Method to Verify the Model State

Activity: Adding a New Validation Rule for Designation

Client-Side Validation

Performing Client-Side Validation

Activity: Adding a New Validation Rule to a JavaScript Function

Implementation

Activity: Adding a New Validation Rule for Designation by Extending

ValidationAttribute

Summary

6. Routing
Convention-Based Routing

Attribute-Based Routing

Working on an Example of Attribute-Based Routing

Route Attribute at the Controller Level

Token Replacement in Route Templates

Activity: Combining Route Templates that Begin with /

Passing Routing Values in HTTP Action Verbs in the Controller

Activity: Defining Two Actions with the Same Name with Different Ver

bs

Route Constraints

Activity: Creating an Attribute that Implements IActionConstraintFac

tory

Summary

7. Rest Buy
Designing Rest Buy

Features and Stories

Layout and Pages

Main Page

Product Detail

Checkout

Checkout Success

Previous Orders

Defining our Domain and Model

Creating a RestBuy Project

Activity: Preparing Features and Stories for a Website

Activity: Preparing Wireframe Diagrams for a Website

Activity: Designing a Domain Model for a Website

Creating the Entities

Create EF Context and Migrations

Create migrations

Activity: Adding a Supplier Entity that Denotes the Supplier of a Pr

oduct

Summary

8. Adding Features, Testing, and Deployment
Adding the Registration Feature

Sign In and Sign Out Mechanism

Creating the Application Layer

Performing Implementations in the Infrastructure Project

Defining our ViewModel for Registration

Defining our Controllers

Creating the Post-Registration Landing Page

Creating a Query for the Registration Service

Validating the Registration

Creating a Unit Test

Writing a Unit Test

Running the Unit Test

Activity: Writing a Unit Test for Deletion

Upgrading Our Project to Bootstrap 4

Activity: Adding a EULA Agreement

Deploying RestBuy to Azure

Signing up to Microsoft Azure

Prerequisites to Azure Deployment

Deploying Rest Buy to Azure

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface
The book sets the stage with an introduction to web applications and helps
you to build an understanding of the tried-and-true MVC architecture. You
learn all about views, from what is the Razor view engine to tagging
helpers. You gain insight into what models are, how to bind them, and how
to migrate databases using the correct model. As you get comfortable in the
world of ASP.NET, you learn about validation and routing. You also learn
advanced concepts, such as designing a RESTful application, creating
entities for it, and creating EF context and migrations.

This book balances theory and exercises, and contains multiple open-ended
activities that use real-life business scenarios for you to practice and apply
your newly acquired skills in a highly relevant context. We have included
over 60 practical activities and exercises across 38 topics to reinforce your
learning. By the time you are done reading the book, you will be able to
optimally use ASP.NET to develop, unit test, and deploy applications like a
pro.

Who this book is for
If you are looking to build web applications using ASP.NET Core or you
want to become a pro in building web applications using the Microsoft
technology, this is the ideal book for you. Prior exposure and understanding
of C#, JavaScript, HTML, and CSS syntax is assumed. This book is written
at the time of .NET Core 2.0 preview.

What this book covers
Chapter 1, Setting the Stage, begins with explaining the fundamental
concepts about web applications—HTTP, client side, and server side. It also
discusses the three programming models of ASP.NET MVC. Finally, it
provides simple and easy-to-follow step-by-step instructions to set up an
ASP.NET Core Web Application project and project structure.

Chapter 2, Controllers, explains the role of the controller in ASP.NET MVC
applications. It also details the procedure of creating a controller and action
methods. It also describes how to make modifications to the controller, such
that it uses the view. Finally, it describes how to add a model and pass that
model data to your view.

Chapter 3, Views, is more hands-on in nature as it teaches how to program in
the Razor view engine and use different programming constructs. It also
explains in depth how to create and call partial views, create a view
component, and create custom Tag Helpers.

Chapter 4, Models, explains how models in ASP.NET MVC are used
to represent the business domain data. It begins by explaining how to create
a simple model and a model specific to ViewModel. It then provides the
step-by-step guidance on how to use Entity Framework in ASP.NET MVC
applications.

Chapter 5, Validation, describes the importance of validating the input data
before storing the data for further processing. It begins with a brief
explanation of the different types of validation. Moves on to explain how to
perform both client-side and server-side validations by using an example.
Finally, it covers how to use jQuery libraries to perform unobtrusive
JavaScript validation.

Chapter 6, Routing, discusses routing along with several options available for
customizing it in ASP.NET. Firstly, it teaches how to configure routing

using MapRoute. It then, through examples, teaches how to work with
different types of routing.

Chapter 7, Rest Buy, details the development of a simple shopping cart
application called Rest Buy. As with how most projects begin, it discusses
the design of Rest Buy. Then, it moves on to discuss the entities for the
application. Finally, it deals with EF context and migrations.

Chapter 8, Adding Features, Testing, and Deployment, is built around adding
the registration feature to our application and testing and deploying it to the
cloud. It, therefore, deals with writing unit tests and upgrading it to
Bootstrap 4. It also details how to deploy our application to Azure.

To get the most out of this book
You need to have a computer system equipped with the following hardware
and software:

For an optimal experience, we recommend the following hardware
configuration:

Processor: 3.2 GHz or faster processor (Dual core with multi-
threading)
Memory: 4 GB of RAM (1.5 GB if running on a virtual machine)
Storage: Installations require 20-50 GB of free Hard disk space
(depending on features installed the requirement can go up to 130
GB of available space)

You must also install in advance the following software:
Operating System: Windows Server 2008 R2 SP1 (and above) or
Windows 7 SP1 (and above)
Visual Studio Community 2017 IDE (https://www.visualstudio.com/do
wnloads/)
Packages and frameworks, such as NuGet, Bootstrap, and
project.json
Fiddler (https://www.telerik.com/download/fiddler)

https://www.visualstudio.com/downloads/
https://www.telerik.com/download/fiddler

Download the example code files
You can download the example code files for this book from your account
at www.packtpub.com. If you purchased this book elsewhere, you can visit www.pac
ktpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/T
rainingByPackt/Beginning-ASP_DOT_NET. In case there's an update to the code, it
will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/TrainingByPackt/Beginning-ASP_DOT_NET
https://github.com/PacktPublishing/

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and
Twitter handles. Here is an example: "Mount the downloaded WebStorm-
10*.dmg disk image file as another disk in your system."

A block of code is set as follows:

public class ValuesController : Controller
{
 // GET api/<controller>
 public IEnumerable<string> Get()
 {
 return new string[] { "value1", "value2" };
 }
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Bold: Indicates a new term, an important word, or words that you see
onscreen. For example, words in menus or dialog boxes appear in the text
like this. Here is an example: "Open up Visual Studio 2017. Navigate to
File | New Project | Web."

Warnings or important notes appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in
the subject of your message. If you have questions about any aspect of this
book, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on
the Internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packtpub.com with a
link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions, we at
Packt can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

Setting the Stage
ASP.NET Core—the redesign of ASP.NET from Microsoft—is the server-
side web application development framework which helps you to build web
applications effectively. This runs on top of the .NET Core platform, which
enables your application to be run on a wide variety of platforms, including
Linux and macOS. This opens up heaps of opportunities and it is exciting to
be a .NET developer in these times.

By the end of this chapter, you will be able to:

Explain the fundamental concepts about web applications—HTTP,
client side, and server side
Explain the three programming models of ASP.NET MVC
Get to grips with the philosophy of ASP.NET MVC
Create your first ASP.NET Core Web Application project and project
structure

Introduction to Web Applications
Before discussing the ASP.NET Core and its features, let us understand
the fundamentals of web application development.

Remember this principle: If you want to be an expert at something, you need to be very
good at the fundamentals.

How Web Applications Work
All web applications, irrespective of whether they are built using ASP.NET
MVC (MVC stands for Model-View-Controller), which is actually
inspired by the success of Ruby on Rails, or any other new shiny
technology, work on the HTTP protocol. Some applications use HTTPS (a
secure version of HTTP), where data is encrypted before passing through
the wire. But HTTPS still uses HTTP.

Symmetric encryption is the conventional method to ensure the integrity of
the data transferred. It makes use of only one secret key, called a
symmetric key, for both encryption and decryption. Both the sender and
receiver possess this key. The sender uses it for encryption, while the
receiver uses it for decryption. Caesar's Cipher is a good example of
symmetric encryption.

Asymmetric encryption makes use of two cryptographic keys. These keys
are known as public and private keys. The information to be sent is
encrypted by the public key. The private key is used to decrypt the
information received. The same algorithm is behind both of these processes.
The RSA algorithm is a popular algorithm used in asymmetric encryption.

Encryption ensures the integrity of the data transferred by making use of
cryptographic keys. These keys are known only by the sender and the
receiver of the data being transferred. This means that the data won't be
tampered by anyone else. This prevents man-in-the-middle attacks.

What is the HTTP Protocol?
A protocol is nothing but a set of rules that govern communication. The
HTTP protocol is a stateless protocol that follows the request-response
pattern.

HTTP stands for HyperText Transfer Protocol and is an application
protocol which is designed for distributed hypermedia systems. HyperText
in HyperText Transfer Protocol refers to the structured text that uses
hyperlinks for traversing between the documents. Standards for HTTP were
developed by the Internet Engineering Task Force (IETF) and the World
Wide Web Consortium (W3C). The current version of HTTP is HTTP/2
and was standardized in 2015. It is supported by the majority of web
browsers, such as Microsoft Edge, Google Chrome, and Mozilla Firefox.

HTTP/2's Edge over HTTP/1.x
At a high level, HTTP/2:

Is binary, instead of textual
Is fully multiplexed, instead of ordered and blocking
Uses one connection for parallelism
Uses header compression to reduce overhead
Allows servers to push responses proactively into client caches

Request-Response Pattern
Before talking about the request-response pattern, let's discuss a couple of
terms: client and server. A server is a computing resource that receives the
requests from the clients and serves them. A server, typically, is a high-
powered machine with huge memory to process many requests. A client is a
computing resource that sends a request and receives the response. A client
could typically be any application that sends the requests.

Coming back to the request-response pattern, when you request a resource
from a server, the server responds to you with the requested resource. A
resource could be anything—a web page, text file, image, or another data
format.

You fire a request. The server responds with the resource. This is called
a request-response pattern.

Stateless Nature of HTTP
When you request for the same resource again, the server responds to you
with the requested resource again without having any knowledge of the fact
that the same was requested and served earlier. The HTTP protocol
inherently does not have any knowledge of the state of any of the previous
requests received and served. There are several mechanisms available that
maintain the state, but the HTTP protocol does not maintain the state by
itself. We will explain the mechanisms to maintain the state later.

Advantages to HTTP
Here are the few advantages of using HTTP protocol:

HTTP is a text-based protocol that runs on top of TCP/IP
HTTP is firewall-friendly
HTTP is easier to debug since it is text based
All browsers know about HTTP. Thus, it is extremely portable on any
device or any platform
It standardizes the application-level protocol into a proper request–
response cycle

With TCP/IP, everybody has to invent their own application protocol.
HTTP is traditionally not full duplex, but with HTML5 we can use Web Sockets to
upgrade HTTP connections to a full duplex connection.

Work with the Statelessness and the
Request-Response Pattern
With the help of a simple practical example, let's work with the statelessness
and the request-response pattern. Here are the steps:

1. Type this URL: https://en.wikipedia.org/wiki/ASP.NET_Core. This is a
Wikipedia web page about ASP.NET Core.

We'll talk about ASP.NET later in this chapter.

2. From the preceding URL, the browser fires a request to the Wikipedia
server.

3. The web server at Wikipedia serves you the ASP.NET Core web page.
4. Your browser receives that web page and presents it.
5. Now, request the same page again by typing the same URL again (http

s://en.wikipedia.org/wiki/ASP.NET_Core) and pressing Enter.
6. The browser again fires the request to the Wikipedia server.
7. Wikipedia serves you the same ASP.NET Core web page without being

aware of the fact that the same resource was requested previously.

8. Here's a screenshot from the Wikipedia page showing requests and
responses:

https://en.wikipedia.org/wiki/ASP.NET_Core
https://en.wikipedia.org/wiki/ASP.NET_Core

As mentioned earlier, there are several mechanisms to maintain the state. Let us
assume, for the time being, that no such mechanism is implemented here.

Client Side and Server Side
It is necessary to understand the client side and server side of web
applications and what can be done on either side. With respect to web
applications, your client is the browser and your server could be the web
server/application server.

The client side is whatever that happens in your browser. It is the place
where your JavaScript code runs and your HTML elements reside.

The server side is whatever happens at the server at the other end of your
computer. The request that you fire from your browser has to travel through
the wire (probably across the network) to execute some server-side code
and return the appropriate response. Your browser is oblivious to the server-
side technology or the language your server-side code is written in. The
server side is also the place where your C# code resides.

Let us discuss some of the facts to make things clearer:

Fact 1: All browsers can only understand HTML, CSS (Cascading
Style Sheets), and JavaScript, irrespective of the browser vendor:

You might be using Microsoft Edge, Firefox, Chrome, or any
other browser. Still, the fact is that your browser can understand
only HTML, CSS, and JavaScript. It cannot understand C#, Java,
or Ruby. This is the reason why you can access the web
applications built using any technology by the same browser:

Fact 2: The purpose of any web development framework is to convert
your server-side code to HTML, CSS, and JavaScript:

This is related to the previous point. As browsers can only
understand HTML, CSS, and JavaScript, all the web development
technologies should convert your server-side code to HTML,
CSS, and JavaScript so that your browser can understand. This is
the primary purpose of any web development framework. This is
true whether you build your web applications using ASP.NET
MVC, ASP.NET Web Forms, Ruby on Rails, or J2EE. Each web
development framework may have a unique
concept/implementation regarding how to generate the HTML,
CSS, and JavaScript, and may handle features such as security
performance differently. But still, each framework has to produce
the HTML, because that's what your browsers understand.

Programming Styles – RPC versus
REST
Basically, there are two common styles when programming HTTP: Remote
Procedure Calls and REST. Let's look at each here:

Remote Procedure Calls: In the RPC style, we usually treat HTTP as
a transport medium and do not focus on HTTP itself. We are simply
piggybacking on HTTP. Our service provides some set of operations
that are callable directly. In other words, from our client, we call
methods as if we are calling normal methods and passing parameters.
Usually, RPC is applied via SOAP (Simple Object Access Protocol),
which is another XML protocol that runs on top of HTTP. RPC was
popular before 2008, and these days the RESTful approach is more
popular, since RPC style introduces more coupling between client and
server.
REST: REST stands for Representational State Transfer. In REST, we
use URLs to represent our resources, such as
https://api.example.com/books/. This URL is basically an identifier for a
book collection. And for example, the following could be an identifier
for the book with ID 1: https://api.example.com/books/1.

Then, we use HTTP verbs to interact with these resources. HTTP verbs and
HTTP methods are synonyms. The available methods in HTTP are GET, HEAD,
POST, PUT, DELETE, TRACE, OPTIONS, CONNECT, and PATCH. So, when we make an HTTP
request with GET, we are basically asking the web server to return that
resource representation. And that representation can change, even for each
request.

The server can return XML for one request and JSON for another,
depending on what a client accepts, which is specified by the Accept header.

Why do we need REST? It is all about standardization. Suppose that we
access a resource by using the GET verb; we inherently know that we are not

altering anything in the server. Similarly, when we send a request via PUT,
we inherently know that the requests are idempotent, meaning duplicate
requests won't change anything to the same resource. Once we have this
standard established, our application behaves like a browser. Just like a
browser does not need documentation of an API while walking through the
pages, our applications will not need documentation, but only adhere to the
standards.

Working with HTTP Methods
HTTP defines methods (sometimes referred to as verbs) to indicate the
desired actions to be performed on the identified resources. It is a part of
HTTP specification. Even though all the requests of the HTTP protocol
follow the request-response pattern, the way the requests are sent can vary
from one to the next. The HTTP method defines how the request is being
sent to the server.

The available methods in HTTP are GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS,
CONNECT, and PATCH. In most of the web applications, the GET and POST methods
are widely used. In this section, we will discuss these methods. Later, we
will discuss other HTTP methods on a need-to-know basis.

The GET Method
GET is a method of the HTTP protocol which is used to get a resource from
the server. Requests which use the GET method should only retrieve the data
and should not have any side effect. This means that if you fire the same GET
request again and again, you should get the same data, and there should not
be any change in the state of the server as a result of this GET request.

In the GET method, the parameters are sent as part of the request URL and
will therefore be visible to the end user. The advantage of this approach is
that the user can bookmark the URL and visit the page again whenever they
want. An example is https://yourwebsite.com/?tech=mvc6&db=sql.

We are passing a couple of parameters in the preceding GET request. tech is the
first parameter, with the value mvc6, and db is the second parameter, with the
value sql. Assume your website takes the preceding parameters with values
and searches in your database to retrieve the blog posts that talk about mvc6
and sql before presenting those blog posts to the user:

The disadvantage of the GET method is that, as the data is passed in clear
text in the URL as parameters, it cannot be used to send sensitive

https://yourwebsite.com/?tech=mvc6&db=sql

information. Moreover, most browsers have limitations on the number of
characters in the URL, so, when using GET requests, we cannot send large
amounts of data.

The POST Method
The POST request is generally used to update or create resources at the server,
as well as when you want to send some data to be processed by the server.
Especially in the context of REST, it is more accurate to consider POST as a
process rather than Create.

Data is passed in the body of the request. This has the following
implications:

You can send relatively sensitive information to the server, as the data is
embedded in the body of the request and it will not be visible to the end
user in the URL. However, note that your data is never truly secure
unless you use HTTPS. Even if you send the data within the request
body, without HTTPS, it is very easy for someone in the middle to
eavesdrop on your data.
As the data is not sent through the request URL, it does not take up
space in the URL, and it therefore has no issues with the URL length
limitations:

As we have covered the fundamentals, we can now proceed to discuss
ASP.NET.

List of Important Methods
Before we discuss the HTTP methods, let's review three aspects of HTTP
verbs:

Idempotency: Idempotency is an important concept in HTTP calls. In
idempotent requests, you can change the server-side state (however,
only once). That is, if you make multiple idempotent requests to the
server, the net effect will be as if you have done one request.

Safety: Safe requests simply do not cause any side effects. They are
only used to retrieve data. By side effects, we refer to any persistent
changes in memory or database or any other external system.
Registering a user is a side effect. Making a money transfer is a side
effect. But viewing user information is not a side effect.
Cacheablity: Server or client or proxies can cache the responses for
the requests.

The following table lists the important HTTP methods and their aspects:

Method Description Idempotent Safe Cacheable

GET Reads a resource. Yes Yes Yes

POST

Creates a resource or
triggers a
process.

No No No

PUT

Puts something onto a
resource
ID. Overrides if
something exits.
Not to be confused
with an
update.

Yes No No

PATCH Updates a part of a
resource.

No No No

DELETE Removes a resource. Yes No No

In the preceding table, we can see that the GET method is the only safe
method. And that's why, for example, search engines like Google only use
GET methods to scan our side. Adhering to this standard makes sure nothing
is changed during a search engine scan.

Other Methods
Some of the other notable methods are as follows:

CONNECT: This is used for HTTP tunneling for security reasons. It's not
common in typical web applications and services.
TRACE: It is used for debugging purposes. It's not common in typical web
applications and services.
OPTIONS: By using the OPTIONS verb, we can query which methods are
supported by the web server for that resource.

Here's some part of the response after the OPTIONS method is invoked:

HTTP/1.1 200 OK
Allow: OPTIONS, GET, HEAD, POST

Activity: Working with the
Request-Response Pattern
Scenario

Your company wants you to monitor the network traffic of their website.
Here, we use https://www.google.com/ as a reference.

Aim

To check the request-response pattern for https://www.google.com/.

Steps for completion

1. Open your favorite browser.
2. Hit F12 to open developer tools.
3. Then, click on the Network tab.
4. Next, go to https://www.google.com/.
5. Study the header body for request and response.

You should see something similar to what is shown in the following
screenshot:

https://www.google.com/
https://www.google.com/
https://www.google.com/

Introduction to ASP.NET
ASP.NET is a server-side web application development framework,
developed by Microsoft, allowing developers to build web applications,
websites, and web services.

It is currently fully open source in this URL and is still maintained by
Microsoft: https://github.com/aspnet

Basically, ASP.NET has three main programming models: ASP.NET Web
Forms, ASP.NET MVC, and ASP.NET Web Pages. They form part of the
ASP.NET Framework in this manner:

ASP.NET for .NET Framework: This has the following sub sections:
Web Forms: This is known for rapid application development.
This tries to mimic desktop behavior.
MVC: This applies the Model-View-Controller pattern.
Web API: This is an MVC-style web service.
Single-Page Application: Here, the server gives the initial
HTML request, but further rendering happens entirely within the
browser.

ASP.NET Core: It is the new ASP.NET Platform that runs in a cross-
platform manner. Subsections are:

Web API: This is primarily used for developing web services.
Web Application: This is used for MVC Applications. It can be
used for developing web services too. Web API and MVC have
become an almost unified thing.
Web Application (Razor Pages): Razor Pages is a feature of
ASP.NET Core MVC that makes coding page-focused scenarios
easier and more productive.

A recent trend for developers is the use of Single-Page Application frameworks on top
of web services like Web APIs. However, MVC and Single-Page Application
frameworks also play nicely together. In the future, we expect Microsoft to put more
effort on .NET Core instead of .NET Framework. .NET Framework is already mature.
Perhaps it will be put into maintenance mode but nothing is certain yet.

https://github.com/aspnet

Even though the end result of all of the preceding programming models is
to produce dynamic web pages effectively, the methodologies that they
follow differ from each other. Let us discuss ASP.NET MVC.

ASP.NET MVC
ASP.NET MVC is the implementation of the MVC pattern in ASP.NET.
The disadvantages of ASP.NET Web Forms which tried to mimic Windows
development in the web environment, such as limited control over the
generation of HTML, coupling with business code and UI code, hard-to-
grasp, and complex page life cycle, are resolved in ASP.NET MVC. As
most of the modern applications are controlled by client-side JavaScript
libraries/frameworks, such as jQuery, KnockoutJS, AngularJS, and
ReactJS, having complete control over the generated HTML is of
paramount importance. As for Knockout, Angular, and React, these single-
page libraries actually generate the HTML directly within the browser via
their own template engines. In other words, the rendering is done in the
browser rather than the server. This frees up server resources and it allows
the web application to behave just like a disconnected application, as in
mobile apps.

Let us talk a bit about the Model-View-Controller pattern and how it
benefits the web application development.

The Model-View-Controller Pattern
This is a software architectural pattern which helps in defining the
responsibility for each of the components and how they fit together in
achieving the overall goal. This pattern is primarily used in building user
interfaces and is applicable in many areas,
including developing desktop applications and web applications. But I am
going to explain the MVC pattern from the context of web development.

Primarily, the MVC pattern has three components:

Model: This component represents your domain data. Note that this is
not your database. This model component can talk to your database, but
the model only represents your domain data. For example, if you are
building an e-commerce web application, the model component may
contain classes such as Product, Supplier, and Inventory.
View: This component is responsible for what to present to the user.
Usually, this component would contain your HTML and CSS files. This
may also include the layout information governing how your web
application looks to the end user.
Controller: As the name implies, the controller is responsible for
interacting with different components. It receives the request (through
the routing module), talks to the model, and sends the appropriate view
to the user.

The following image speaks of the MVC pattern:

This separation of responsibilities brings great flexibility to the web
application development, allowing each area to be managed separately and
independently.

The Code for ASP.NET Core is as follows:

public class ValuesController : Controller
{
 // GET api/<controller>
 public IEnumerable<string> Get()
 {
 return new string[] { "value1", "value2" };
 }
}

Basically, each controller is represented by a class derived from the Controller
class, although we can also write controllers without deriving from Controller.
Each public method of the controller represents actions.

In this case, if we define a GET method (accessed via www.yoursite.com/controller
without writing GET), it returns a string array as a response. How these strings

are returned depends on the content negotiation.

A File-Based Project
Whenever you add a file or folder in your file system (inside the ASP.NET
Core project folder), the changes will automatically be reflected in your
application.

We bundle our static files into one file because for each static file, a browser
will make a separate request to the server to retrieve it. If you have 100 CSS
and JavaScript files, this means there will be 100 separate requests to
retrieve those files. Obviously, reducing the number of requests will
certainly improve the performance of your application. Thus, bundling is
effectively decreasing the number of requests.

HTTP/2 uses only 1 persistent connection for all files and requests. Thus, bundling is
less useful in HTTP/2. However, it's still recommended since HTTP/1.x is here to stay for
a long time.
The development and deployment of an ASP.NET Core application on a Linux machine
will be explained in a later chapter.

These are the important folders and files in a file-based project:

Folder/File Description

Controllers

This folder contains all of your controller files.
Controllers are responsible for handling requests,
communicating models, and generating the views.

Models
All of your classes representing domain data will be
present in this folder.

Views

These are files that contain your frontend components and
are presented to the end users of the application. This
folder contains all of your RazorView files.

wwwroot This folder acts as a root folder and it is the ideal
container to place all of your static files, such as CSS and
JavaScript files. All the files which are placed in the

wwwroot folder can be directly accessed from the path,
without going through the controller.

Other files

The appsettings.json file is the configuration file where you
can configure application-level settings. Previously, .xml
files were used for configuration; however, the .json
format is less verbose, and Bower and npm (Node
Package Manager) are client-side technologies,
supported by ASP.NET Core applications. The
Bundle.config file allows us to configure how to bundle our
CSS and JS files into one file.

Here's the project structure of ASP.NET Core:

Despite the fact that current ASP.NET Core templates are using Bower, Bower itself is
obsolete now. Instead, npm or yarn is recommended. Just like NuGet, the JavaScript
world needed package managers as there are hundreds of thousands of libraries and
they have complex dependencies on each other. These package managers allow you to
automate the installation and upgrades of these libraries by writing single commands
from the command line.

Creating Your First Project
Follow this steps to create your first project:

1. Open up Visual Studio 2017. Navigate to File | New Project | Web.
You'll be presented with this screen:

2. Select ASP.NET Core Web Application. Optionally, give a name to
your project, or accept the default. Then, click on OK.

3. Make sure you select .NET Core 2.0. If it doesn't show up, download
.NET Core SDK from https://www.microsoft.com/net/download/ core and
restart Visual Studio. Then select Web Application and click on OK.

4. Right-click on your project and click on Build. This will restore the
dependencies.

https://www.microsoft.com/net/download/

Creating Your First Application
It is now time to create your first ASP.NET Core application.

Fire up Visual Studio and follow these steps:

1. Create a project by selecting File | New Project in Visual Studio. The
first option is for creating an earlier version of the ASP.NET web
application. The second option is for creating the ASP.NET Core
application using the .NET Core framework. NET Core supports only
the core functionalities. The advantage of using the .NET core library is
that it can be deployed on any platform. Select ASP.NET Core Web
Application:

Routing and controllers work together to render the correct view.

We'll use the name Lesson2 here to avoid reinventing the wheel in Chapter 2, Controllers.

2. Select the Empty template from the list of ASP.NET Core templates.
The second option is for creating the Web API application (for building
the HTTP-based services) and the third option is for creating a web
application containing some basic functionalities which you can run out
of the box, without you ever needing to write anything:

3. Once you click on OK in the window, as shown in the preceding
screenshot (after selecting the Empty template option), a solution will
be created, as shown in the following screenshot:

4. When you run the application (by pressing F5) without any changes,
you'll get the simple Hello World! text on your screen, as shown in the
following screenshot:

We have not done any coding in this newly created application. So, have you
thought about how it displays the text Hello World!?

The answer lies in the Startup.cs file, which contains a class by the name of
Startup.

When an exception occurs, we want to display the callstack for better diagnosis, for
instance. However, doing so in a production environment would be a security risk.
Hence, we have development-specific code.

ASP.NET Core runtime calls the ConfigureServices and Configure methods
through the main method. For example, if you want to configure any service,
you can add it here. Any custom configuration for your application can be
added to this Configure method:

public void ConfigureServices(IServiceCollection services)
{
}
public void Configure(IApplicationBuilder app, IHostingEnvironment
env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
}

There are only a couple of statements in the Configure method. Let us leave
aside async, await, and context for the moment in the second statement, which
we will discuss later. In essence, the second statement tells the runtime to
return Hello World! for all the incoming requests, irrespective of the
incoming URL.

When you type the URL http://localhost:50140/Hello in your browser, it will
still return the same Hello World!

This is the reason we got the Hello World! when we ran the application.

As we have chosen the Empty template while creating the ASP.NET Core
application, no component will have been installed. Even MVC won't be
installed by default when you select the Empty template as we did.

Summary
In this chapter, you've learned the basics of web development, including
what constitutes the server side and client side. HTTP is a key protocol in
web development. We have even discussed the features of ASP.NET Core.
We've looked at REST and RPC as two web programming styles.

We have also discussed the new project structure of the ASP.NET Core
application and the changes when compared to the previous versions.

In the next chapter, we are going to discuss the controllers and their roles
and functionalities. We'll also build a controller and associated action
methods and see how they work.

Controllers
In the previous chapter, we discussed that all web applications receive
requests from the server and produce a response that is delivered back to the
end user. This chapter covers the role of controllers in ASP.NET MVC
applications and details the procedure of creating a controller and action
methods.

By the end of this chapter, you will be able to:

Explain the role of the controller in ASP.NET MVC applications
Work with the routing engine
Install the ASP.NET Core NuGet packages in your application
Create your first controller and action methods
Add a view and make the changes that allow your controller to use that
view
Add a model and pass that model data to your view

Role of the Controller in ASP.NET
MVC Applications
A controller does the job of receiving the request and producing the output
based on the input data in ASP.NET MVC. You can imagine controllers as
the entrance point to your business flow that organizes the application flow.

If you are intending to write a complex application, it is best to avoid business logic in
your controllers. Instead, your controllers should call your business logic. In this way,
you can keep the core part of your business technology-agnostic.

At the high level, the controller orchestrates between the model and the
view, and sends the output back to the user. This is also the place where
authentication is usually done through action filters. Action filters are
basically interceptors and will be discussed in detail in the Filters section of
this chapter. The following diagram illustrates the high-level flow of a
request (with the steps) in ASP.NET MVC and shows us how the controller
fits into the big picture:

The following is the sequence of events that will happen at the high level
when the user is accessing the ASP.NET Core application:

1. The user types the URL in the browser.

2. Based on the pattern of the URL, the routing engine selects the
appropriate controller.

3. The controller talks to the model to get any relevant data through its
action methods. Action methods are methods within a controller class.

4. The controller then passes the data to the view to present it in a
viewable format, typically as HTML elements.

5. The view is finally delivered to the user, which he would be viewing in
his browser.

Before discussing the controller, let us discuss the fundamentals of routing
concepts, as the routing engine only chooses the appropriate controller and
action method at runtime.

Ideal Flow of Data for a Layered
Web Application
Let's see what an ideal flow of data for a layered web application looks like.
Have a look at the following diagram:

Let's analyze the diagram. Here's the explanation:

The Browser is the medium through which the user types the URL
The appropriate Controller gets into action
The Controller communicates with the Business Layer and the Data
Layer
The Business Layer returns the data requested by the user to the
Controller

The business and the data layers constitute the model part of the MVC.
Now, what are these layers? The business layer's job is to put the business
logic or functionality to use. The data layer concerns with external systems
such as databases. It provides access to these systems.

Introduction to Routing
The routing engine is responsible for getting the incoming request and
routing that request to the appropriate controller based on the URL pattern.
We can configure the routing engine so that it can choose the appropriate
controller based on the relevant information. In other words, routing is a
programmatic mapping that states which method of which controller is to
be invoked based on some URL pattern.

By convention, ASP.NET MVC follows this pattern: Controller/Action/Id.

If the user types the URL http://yourwebsite.com/Hello/Greeting/1, the routing
engine selects the Hello controller class and Greeting action method within the
Hello controller, and passes the Id value as 1. XXXController is a naming
convention and it is assumed your controllers are always ending with a
controller suffix. You can give default values to some of the parameters and
make some of the parameters optional.

The following is the sample configuration:

The template: "{controller=Hello}/{action=Greeting}/{id?}");

In the preceding configuration, we are giving three instructions to the
routing engine:

Use the routing pattern controller/action/id.
Use the default values Hello and Greeting for controller and action
respectively, if the values for controller or action are not supplied in the
URL.
Make the id parameter optional so that the URL does not need to have
this information. If the URL contains this Id information, it will use it.
Otherwise, the id information will not be passed to the action method.

Let us discuss how the routing engine selects the controller classes, action
methods, and id values for different URLs. We'll start with URL1, here:

URL1: http://localhost/
Controller: Hello
Action method: Greeting
Id: no value is passed for the id parameter

The Hello controller is passed as the default value as per the routing configuration, as
no value is passed as the controller in the URL.

The following action method will be picked up by the routing handler when
the preceding URL is passed:

public class HelloController : Controller
{
 public ActionResult Greeting(int id)
 {
 return View();
 }
}

Let's look at URL2, here:

URL2: http://localhost/Hello/Greeting2
Controller: Hello
Action method: Greeting2
Id: no value is passed for the id parameter

The Hello controller will be chosen as the URL contains Hello as the first parameter, and
the Greeting2 action method will be chosen as the URL contains Greeting2 as the second
parameter. Please note that the default value mentioned in the configuration would be
picked only when no value is present in the URL. As the id parameter is optional and
the URL does not contain the value for id, no value is passed to the id parameter.

The following action method Greeting2 will be picked up by the routing
handler when the preceding URL is passed:

public class HelloController : Controller
{
 public ActionResult Greeting(int id)
 {
 return View();
 }
 public ActionResult Greeting2(int id)
 {
 return View();
 }
}

Let's look at URL3, here:

URL3: http://localhost/Hello2/Greeting2
Controller: Hello2
Action method: Greeting2
Id: no value is passed for the id parameter

As Hello2 is passed as the first parameter, the Hello2 controller will be selected, and
Greeting2 is the action method selected since Greeting2 is passed as the second parameter.
As the id parameter is optional and no value is passed for the parameter id, no value
will be passed for the id.

The following action method will be picked up by the routing handler when
the preceding URL is passed:

public class Hello2Controller : Controller
{
 public ActionResult Greeting2(int id)
 {
 return View();
 }
}

Let's look at URL4, here:

URL4: http://localhost/Hello3/Greeting2/1
Controller: Hello3
Action method: Greeting2
Id: 1

Hello3 is the controller selected as it is mentioned as the first parameter. Greeting4 is the
action method, and 1 is the value passed as the id.

The following action method will be picked up by the routing handler when
the preceding URL is passed:

public class Hello3Controller : Controller
{
 public ActionResult Greeting2(int id)
 {
 return View();
 }
}

Another common pattern is to use more RESTful programming practice.
We instead treat URLs as Resource ID and send the action as an HTTP
method such as GET or POST.

So, from a classical MVC point of view, if you need to edit a book, you
send a post to http://yourwebsite.com/Books/Edit/1 with a POST request, and the
body contains the new book details.

However, from a RESTful standpoint, you would use
http://yourwebsite.com/Books/1 with a PUT or PATCH request, and the request body

contains the book details.

The point of RESTful programming is to have some sort of standardization
that everyone agrees on at least up to a certain degree. For the RESTful case
you don't have to document your API. Everyone knows that a PUT request
replaces the resource that is by HTTP standard. However, for the actions,
someone can call it Edit whereas another can call it Update. Of course, with
web applications that are not intended to be used as an API, this is less
valuable. However, you might want a reusable API along with your web
application. That's where the RESTful approach shines. For that case, your
web pages just become a special case of the API and you have less
duplication.

Activity: Finding the Correct
Method Invoked for a URL
Scenario

There has been a cyber attack in your company. The administrator wants to
know which method has been invoked by the hacker by sending you the
malicious URL.

Aim

To find the correct method invoked for the given URL
(http://localhost/Hello3/Welcome/1).

Steps for completion

Open your editor and type the following code:

Go to https://goo.gl/2Jy3W4 to access the code.

public class Hello3Controller : Controller
{
 public ActionResult Welcome(int id)
 {
 return View();
 }
...
...
 {
 return View();
 }
}

Once the request reaches the controller, the controller will create a response
by talking to the model and may pass the data to the view, and the view will
then be rendered to the end user.

We will discuss routing in detail in a later chapter.

https://goo.gl/2Jy3W4

Installing the ASP.NET Core NuGet
Package in Your Application
We'll straight away jump to installing the ASP.NET Core NuGet package in
your application.

Follow these steps to install the NuGet package of ASP.NET MVC:

1. Right-click on the dependencies, and select the Manage NuGet
Packages option:

2. We will see that a package called Microsoft.ASPNetCore.All is
installed (as shown in the following screenshot). This package is

actually a meta package that installs most of the dependencies we need.

3. If we extend this package from dependencies, we will see:

So, everything we need is already installed regardless of using an empty
project or not.

ASP.NET Core is installed in our application. Now, we need to tell our
application to use ASP.NET MVC.

This needs a couple of changes to the Startup.cs file:

1. Configure the application to add the MVC service. This can be done by
adding the following line to the ConfigureServices method of the Startup
class:

Go to https://goo.gl/RPXUaw to access the code.

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
}

2. Configure the routing so that our correct controllers will be picked for
the incoming requests based on the URL entered. The following code
snippet needs to be updated in the Configure method of the Startup.cs file:

Go to https://goo.gl/Xa1YcD to access the code.

public void Configure(IApplicationBuilder app,IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}
 /{action=Index}/{id?}");
 });
}

In the preceding statement, we are configuring the routes for our application.

In this chapter, and most of the chapters in this course, we will write codes
manually or choose an Empty template instead of relying on scaffolding
templates. For those who are new to the term scaffolding, scaffolding is a

https://goo.gl/RPXUaw
https://goo.gl/Xa1YcD

feature that generates all the necessary boilerplate code for you for the
selected item (for example, the controller) instead of you needing to write
everything.

Though scaffolding templates are useful and save time in generating the boilerplate
code, they hide many of the details that beginners have to understand. Once you write
code manually, you'll know all the intricacies of how each of the components is
contributing to the big picture. Once you are strong in the fundamentals, you can use
scaffolding templates to save you time in writing the boilerplate code. Scaffolding is also
useful for creating quick administrative pages to edit our database.

Our First Controller
Before creating the controller, we need to remove the following app.Run
statement as this will return Hello World! for all the incoming requests. As
we want incoming requests to be handled by the controllers, we need to
remove the following code from the Configure method of the Startup class:

app.Run(async (context) =>
{
 await context.Response.WriteAsync("Hello World!");
};

We have installed ASP.NET Core in our application. So, we are geared up
for creating our first ASP.NET Core controller. Create a folder with the name
Controllers and add a new controller from the context menu, as shown in the
following screenshot:

Context basically represents the request-response pair along with other
metadata necessary to process the request.

For people who used OWIN to develop your own web custom framework without using
MVC, it is analogous to IOwinContext. And apparently, app.Run would be a good entry point
to handle HTTP requests manually or for writing a custom framework. After all, HTTP
is about retrieving requests and returning responses.

Once you navigate to Add | New Item, you will be shown the following list
of options. We are going to add an MVC controller class to our project:

A class will be created with the following content:

public class HomeController : Controller
{
 // GET: /<controller>/
 public IActionResult Index()
 {
 return View();
 }
}

All controllers, both MVC and Web API controllers, inherit from the
Controller base class. In earlier versions of ASP.NET MVC, MVC controllers
would inherit from the Controller class and Web API controllers would inherit
from the APIController class.

In the preceding HomeController class, we have a single action method by Index
that returns the corresponding view. When you run the application as it is,
you'll get a 500 Internal Server Error. The reason for this is that no view has

been created for the Index action of the HomeController and ASP.NET Core tries
to search for that view. As the view is not available, it returns a 500 Internal
Server Error with the message "InvalidOperationException: The view 'Index'
was not found. The following locations were searched:". Whenever a status
code starts with 5XX, then we think that it is the servers, fault. Whenever a
status code starts with 4XX, then it is client related.

Instead of creating and returning that view, let us make a simple change to
this action method. Let us return a string, Hello World! I am learning MVC!,
and change the return type of IActionResult:

public string Index()
{
 return "Hello World! I am learning MVC!";
}

Run the application. You'll see the Hello World! I am learning MVC! in your
browser, as shown in the following screenshot. Please make sure that you
remove the app.Run statement in the Configure method, as mentioned earlier:

Voila! We have changed the ASP.NET Core application to render the custom
content instead of the boring Hello World! What we have done may seem
like a marginal improvement, but we have used controllers and action
methods in our ASP.NET Core application, which has brought a lot of
structure and flexibility to the web application development.

The following screenshot shows what happens in the background when we
run the application:

The following is the sequence of steps that occur when we run the
application:

1. The application runs on the URL http://localhost:50140, where 50140 is the
port number selected by IIS Express to run the application on my local
system. This number may vary.

2. As we have not passed any parameter, default values for the Controller
and action methods will be selected. In our case, HomeController will be
chosen as the Controller and Index will be chosen as the action method in
the HomeController. Since ID is the optional value and it is not passed, this
ID parameter is ignored.

3. After the Controller and action methods are selected by the routing
engine, control is passed to the action method of the selected controller.
In our case, it will be the Index action method of the HomeController.

4. In the Index action method, we are returning a string, Hello World! I am
learning ASP.Net MVC! This text is returned from the controller, which
would then return back to the user.

IActionResult
If you noticed, the default return type in the action method of the controller
was IActionResult, and then we changed the return type to the string in order
to return the text Hello World!.

The IActionResult is the interface that we can use to return different types of
ActionResult, ranging from a simple string to complex JSON data, so, we
don't need to change the return type of the action method to return the string.

In the earlier example, the return type was changed to the string to make
things simple. Now, let us make a simple change to return the string by
keeping the return type (IActionResult) as it is:

// GET: /<controller>/
public IActionResult Index()
{
 return Content("Hello World! I am learning MVC!");
}

While returning the string, we are using the virtual method called Content
from the Controller class (the base controller from where HomeController is
inherited from) in the preceding action method. The purpose of this Content()
method is to convert the string to the type IActionResult.

IActionResult is capable of returning different data types:

ContentResult: Can return a text result.
EmptyResult: Returns a null result.
FileResult: Returns a binary output to write to the response.
HttpStatusCodeResult: Provides a way to return.
JavaScriptResult: Returns a script that can be executed from the client
side.
JSonResult: Returns a serialized JSON object.
RedirectResult: Redirects to another action method.
RedirectToRouteResult: Represents a result that performs a redirection by
using a specified route values dictionary.

These are actually methods in the ControllerBase class.

Activity: Implementing Your Own
IActionResult
Scenario

You want to learn how to access the underlying stream of response of a
string.

Aim

Write an activity result that would capitalize the given string.

Steps for completion

1. First, add the following class to your projects:

Go to https://goo.gl/GDi6JS to access the code.

public class UpperStringActionResult : ActionResult
{
 readonly string str;
 public UpperStringActionResult(string str)
 {
 this.str = str;
 }
 public override void ExecuteResult(ActionContext context)
 {
 var upperStringBytes =
 Encoding.UTF8.GetBytes(str.ToUpper());
 context.HttpContext.Response.Body.Write(
 upperStringBytes, 0, upperStringBytes.Length);
 }
}

What is encoding? Encoding is basically a process in which a sequence of characters is
put into a specialized format. The characters could be numerical, alphabet, symbols, and
so on. The purpose is to serve efficient transmission and storage. What is UTF-8? UTF-
8 is the encoding for the web for efficiency reasons.

2. Then, revise your controller action, as follows:

Go to https://goo.gl/DTWzN4 to access the code.

https://goo.gl/GDi6JS
https://goo.gl/DTWzN4

public IActionResult IndexUpper()
{
 return new UpperStringActionResult("Hello World! I am learning MVC!");
}

3. Then, run your application. You'll get the following output:

As you can see, all letters are in capitals.

Adding Views
So far, we were returning a simple string from the controller. Although that
explains the concept of how the Controller and action methods works, it is not
of much practical use.

Let's create a new action method named, Index2:

Go to https://goo.gl/UhaHyz to access the code.

public IActionResult Index2()
{
 return View(); // View for this 'Index2' action method
}

Now, we have created the action method that returns a view, but we have
still not added the view. By convention, ASP.NET MVC would try to search
for our view in the Views\{ControllerName}\{ActionMethod.cshtml} folder. With
respect to the preceding example, it will try to search for
Views\Home\Index2.cshtml. Please note that the name of the controller folder is
Home, not HomeController. The prefix is only needed as per convention. As this
folder structure and file are not available, you'll get a 500 Internal Server
Error when you try to access this action method through the URL
http://localhost:50140/Home/Index2.

So, let us create a folder structure. Right-click on the solution, navigate to
Add | New Folder from the context menu, create a folder called Views, and
then create a subfolder by the name Home within the Views folder:

https://goo.gl/UhaHyz

Right-click on the Home folder, and navigate to Add | New Item from the
context menu. A dialog will appear, as shown in the below screenshot. Give
the name of the file as Index2.cshtml, as our action method name is Index2. cshtml
is the Razor view engine (this will be discussed in detail in The View Engine
and the Razor View Engine section of the next chapter) extension used when
you are using C#.

A file by the name Index2.cshtml will be created with the following
content when you click on the Add button in the preceding screen:

@* is the comment syntax in the Razor view engine. You can write any C#
code within the @{} block.

Let us add a simple HTML block after the generated code:

<html>
<body>
 Hello! This is my first View
</body>
</html>

Now, when you run the application, you will get the following output:

The following diagram explains the request flow and how we generate the
response through the View:

Adding Models
Models represent your business domain classes. Now, we are going to learn
about how to use the Models in our controller. Create a Models folder and add
a simple Employee class. This is a just a plain old C# class:

Go to https://goo.gl/uBtpw3 to access the code.

public class Employee
{
 public int EmployeeId { get; set; }
 public string Name { get; set; }
 public string Designation { get; set; }
}

Create a new action method, Employee, in our HomeController, and create an object
of the Employee Model with some values, and pass the Model to the View. Our
idea is to use the Model employee values in the View to present them to the
user:

Go to https://goo.gl/r4Jc9x to access the code.

public IActionResult Employee()
{
 //Sample Model - Usually this comes from database
 Employee emp1 = new Employee
 {
 EmployeeId = 1,
 Name = "Jon Skeet",
 Designation = " Software Architect"
 };
 return View(emp1);
}

Now, we need to add the respective View for this action method. Add a new
Razor view file called Employee.cshtml in the View\Home folder.

Add the following code snippet. Whatever comes after the @ symbol is
considered as Razor code. In the following code, we are trying to access the
properties of the Model object that is passed to our view. In our case, Model

https://goo.gl/uBtpw3
https://goo.gl/r4Jc9x

represents the employee object that we have constructed in our action method.
You can access the object from the view using the Model keyword:

Go to https://goo.gl/u4gCzN to access the code.

<html>
<body>
 Employee Name : @Model.Name

 Employee Designation: @Model.Designation

</body>
</html>

When you run the application and type the URL http://localhost:50140/Home/
Employee, you'll see the following output:

Optional: Take Up a Challenge
Alter your View code so that it displays EmployeeID.
Try to display a non-existing property such as @Model.Age. What happens when you do it?
Note that we get an error message if we try to access a non-existing property.

https://goo.gl/u4gCzN

Passing Data from the Controller to
the View
We have just discussed how to pass the data from the controller to the view
using the Model object. While calling the view, we are passing the model data
as a parameter. But there are times when you want to pass some temporary
data to the view from the
controller. This temporary data may not deserve a model class. In such
scenarios, we can use either ViewBag or ViewData.

ViewData is the dictionary and ViewBag is the dynamic representation of the
same value.

Let us add the company name and company location property using ViewBag
and ViewData, as shown in the following code snippet:

Go to https://goo.gl/oYH7am to access the code.

public IActionResult Employee()
{
 //Sample Model - Usually this comes from database
 Employee emp1 = new Employee
 {
 EmployeeId = 1,
 Name = "Jon Skeet",
 Designation = " Software Architect"
 };
 ViewBag.Company = "Google Inc";
 ViewData["CompanyLocation"] = "United States";
 return View(emp1);
}

Make the respective changes in the Employee.cshtml View file as well so that
we can display the Company name and CompanyLocation values:

Go to https://goo.gl/KmqUhx to access the code.

<html>
<body>
 Employee Name : @Model.Name

https://goo.gl/oYH7am
https://goo.gl/KmqUhx

 Employee Designation: @Model.Designation

 Company : @ViewBag.Company

 Company Location: @ViewData["CompanyLocation"]

</body>
</html>

Run the application after making the preceding changes:

ViewBag and ViewData represent the same collection, even though the entries in
the collection are accessed through different methods. ViewBag values are
dynamic values and are executed at runtime, whereas the ViewData is accessed
through the dictionary.

To test this, let us make a simple change to our view file:

<html>
<body>
 Employee Name : @Model.Name

 Employee Designation: @Model.Designation

 Company : @ViewData["Company"]

 Company Location : @ViewBag.CompanyLocation

</body>
</html>

Even though the Company value was stored using ViewBag in the Controller, we're
accessing it using ViewData. The same is the case for the CompanyLocation value.
We have stored the value using ViewData in the Controller, but we are
accessing the value using ViewBag.

When you run the application after making the preceding changes, you'll see
the same result as you have seen before.

Filters
Filters in ASP.NET MVC enable you to run code before or after a particular
stage in the execution pipeline. They can be configured globally, per
controller, or per action. You can consider filters as interceptors.

There are different kinds of filters, and each filter is executed at a different
stage in the pipeline. For example, action filters are executed when the action
method is executed.

Let us use a simple example to see how an action filter (a type of filter)
works.

We've created a simple controller, DateController, where we're just displaying
the time. In this action method, we're using a predefined action filter by the
name of ResponseCache, that caches the response for the duration specified in
seconds. In the following code snippet, we have mentioned the duration as
600 seconds. So, the response will be cached for 10 minutes:

Go to https://goo.gl/pEBqt6 to access the code.

public class DateController : Controller
{
 [ResponseCache(Duration = 600)]
 public IActionResult Index()
 {
 return Content(DateTime.Now.ToShortTimeString());
 }
}

When we run it for the first time, it displays the time as expected. But when
you refresh the browser (which indirectly fires the request again), the time is
not updated as the response is cached already by the application.

In the following screenshot, even though the time is 7:43, the application is
still showing as 7:40:

https://goo.gl/pEBqt6

Now, we'll look at some of the predefined types of filters available in
ASP.NET Core.

Here are some of the different kinds of filters:

Authorization filters: These are used for authorization and are mainly
intended to determine whether the current user is authorized for the
request being made.
Resource filters: These are the filters that handle the request after
authorization and are the last ones to handle the request before it leaves
the filter pipeline. They are used to implement caching or by passing
the filter pipeline.
Action filters: These wrap calls to individual action method calls and
can manipulate the arguments passed in the action as well as the action
result returned from it.
Exception filters: Exception filters are used to manage the unhandled
exceptions in ASP.NET MVC.
Result filters: Result filters wrap the individual action results and they
only run when the action method is executed successfully.

With the help of caching we can immediately return results that are calculated
previously, thus totally avoiding executing the request-response pipeline. The

disadvantage is that we would be showing stale data.

Activity: Writing a Custom Filter
Scenario
You need to write a filter that will only allow the applied action on Sundays.
How would you do that?

Aim
To write a custom filter.

Steps for completion

1. Open your editor and write this code:

Go to https://goo.gl/9QKgbS to access the code.

public class SundayFilter : Attribute, IActionFilter
{
 public void OnActionExecuting(ActionExecutingContext context)
 {
 if (DateTime.Now.DayOfWeek != DayOfWeek.Sunday)
 context.Result = new ContentResult()
 {
 Content = "Sorry only on sundays!"
 };
}
 public void OnActionExecuted(ActionExecutedContext context)
 {
 // do something after the action executes
 }
}

Setting results in the filter causes short circuiting, so our action does not run.

2. Now, we can apply this attribute onto our actions:

Go to https://goo.gl/x1ij7Z to access the code.

[SundayFilter]
public IActionResult Employee()
{
…
…
}

https://goo.gl/9QKgbS
https://goo.gl/x1ij7Z

You have successfully created a custom filter.

Summary
In this chapter, we have built our first ASP.NET Core application from
scratch. We have learned how the controller fits into the overall ASP.NET
MVC application and learned how to build our first controller with the
action methods. We also learned how to use the model and view in our
controller. We have also discussed different ways to pass the data from the
controller to the view using ViewBag and ViewData. We have also learned about
filters in ASP.NET MVC and how to make use of predefined filters in
ASP.NET Core.

Views
Views are the actual output of an application which are delivered to the
user. They are what users actually see on the screen when they access your
application. All components, including menus, input elements, dialog
boxes, and everything else the user sees come from your views. If you do
not provide a good user experience when accessing your application, users
will not care how great your application is. So, views play a critical role
when building an ASP.NET MVC application. Separating views from a
controller allows the HTML design process to be separate from the logic. It
is also beneficial in terms of unit testing the controller.

By the end of this chapter, you will be able to:

Explain the purpose of the view engine and the Razor view engine
Program in the Razor view engine and use different programming
constructs
Work with the layout in ASP.NET Core and its features
Generate HTML code
Create and call partial views
Create a view component
Create custom Tag Helpers

The View Engine and the Razor
View Engine
As discussed in Chapter 1, Setting the Stage, a browser can only understand
HTML, CSS, and JavaScript. The purpose of the view engine is to generate
the HTML code from your view and send it to the browser so that it can
understand the content. Primarily, there are two different types of view
engines—the Razor view engine and the Web Form view engine. Although
these two view engines come out of the box with ASP.NET MVC, you can
use any custom view engine.

The Razor View Engine
The Razor view engine is the default and recommended view engine in
ASP.NET Core. Going forward, it may be the only view engine that comes
out of the box when you install ASP.NET MVC.

You can mix C# code and HTML code in your Razor view and the Razor
view engine is intelligent enough to distinguish between the two and
generate the expected output. In some scenarios, you may have to give
additional information to the Razor view to produce appropriate results.
Razor code blocks start with the @ symbol but do not require a closing @.

Programming in the Razor View
Engine
Programming in the Razor view engine is just like programming in C#. The
difference is that, in the Razor view engine, your C# code will be mixed
with HTML to produce the desired HTML output.

Variables in the Razor View
You can declare a variable inside the Razor block and use that variable
using the @ symbol.

In all the examples in this chapter, we will only present the code samples of the view.

Working with Razor View
Here's an example for us to explore Razor view. Follow these steps:

1. Create a new empty ASP.NET Core project.
2. Create a Controllers folder and a controller called HomeController.
3. Create a folder called Views, a subfolder called Home, and a view file called Index.cshtml by

right-clicking on the context menu, navigating to Add | New Item, and then selecting
MVC View Page from the list.

According to the pattern of configuration over convention, the controller name must match the appropriate
view folder. Hence, we name the controller HomeController and the view folder Home.

4. Make sure your Startup.cs file looks as follows:

Go to https://goo.gl/qzz2aT to access the code.

public class Startup
{
 // This method gets called by the runtime. Use this method to add services to the container.
 // For more information on how to configure your application, visit
 https://go.microsoft.com/fwlink/?LinkID=398940
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();
 }
…
…
}

5. The HomeController.cs file will have the following code:

Go to https://goo.gl/vWxjRq to access the code.
When copying code from the link provided, remember to append it with the closing curly brace for the
HomeController class, as shown in the preceding code snippet.

public class HomeController : Controller
{
 // GET: /<controller>/
 public IActionResult Index()
 {
 return View();
 }
}

Next is the updated MVC view page, where we will declare a variable and use it. The first
five lines and the last two lines are simple HTML elements.

We will concentrate on the lines that are bold. Then, we will create a Razor block using @ { …
} and declare a variable inside it. The Razor block ends with the closing curly bracket. The
snippet Value: is considered simple HTML text. As we would like to use the Razor variable

https://goo.gl/qzz2aT
https://go.microsoft.com/fwlink/?LinkID=398940
https://goo.gl/vWxjRq

value, we will use @i to instruct the Razor view engine that i is not normal HTML text; it is a
Razor construct and is to be treated accordingly. The complete HTML code is as follows:

Go to https://goo.gl/Jch17b to access the code.

<html>
<head>
 <title> Views demo</title>
</head>
<body>
 @{
 int i = 5;
 }
 Value: @i
</body>
</html>

When you run the application, you'll see the following output:

When you access the Razor variable, you will need to use the @ symbol. Without this, the Razor view engine
sees the i variable as text and not as an expression.

The following screenshot is the result you will get when you access the variable without the
@ symbol:

https://goo.gl/Jch17b

Programming Constructs in the
Razor View
You can use most of the programming constructs available in C# in the
Razor view. Let's look at some of these in detail.

The for Loop

Writing code for the for loop is pretty straightforward. Let's write a piece of
code for the for loop construct.

Here's the code for the for loop construct where we loop through the file
five times and print the variable name:

@{
 for (int i = 0; i < 5; i++)
 {
 @(i + 1)
 }
}

The following are a few points to note:

As the for loop is Razor code, we should begin the loop with an @
symbol to indicate that the code that follows is Razor code and not
normal HTML.
Whenever we use an HTML element or tag, the Razor view engine
falls back to HTML mode. If you want to use a Razor expression
within HTML tags, you need to include the @ symbol again to tell the
Razor view engine that whatever follows is Razor code and not an
HTML element. This is the reason we use the @ symbol again in the
preceding expression, even within the parent root-level Razor code.

Razor is a template engine. We use Razor expressions on the dynamically generated
HTML parts.

The complete code for the view is as follows:

<html>
<head>
 <title> Views demo</title>
</head>
<body>

 @{
 for (int i = 0; i < 5; i++)
 {
 @(i + 1)
 }
 }

</body>
</html>

The while Loop

Let's write a piece of code for the while loop. We'll implement the same loop
we used for the previous example. Please note that the emboldened
expressions increment the variable i. We will not use the @ symbol, as it is
not within the HTML element.

Here's the code for the while loop construct where we loop through the file
five times and print the variable name:

@{
 int i = 0;
 while (i < 5)
 {
 @(i + 1)
 i++;
 }
}

The foreach Loop

The foreach loop in the Razor view is the same as the foreach loop in C#.

Here's the code for the foreach loop construct where we initialize a list of
integers, iterate through the list, and print it as a list item:

 @{
 List<int> integers = new List<int>
 {
 1,2,3,4,5

 };
 foreach (int i in integers)
 {
 @i
 }
 }

The if Condition

Let's look at an example of the if condition; we will check whether the
value of the variable is less than 10. If it is less than 10, we will print i is
less than 10, otherwise, we will say i is greater than 10. You may wonder
why we have to include the text tag and what its purpose is.

As we are inside the Razor view code block, the text i is less than 10 will be
considered a Razor expression, but it is not.

This text tag is to instruct the Razor view engine that whatever follows the
text tag is to be considered as text and not a Razor expression.

Here's the code for the if condition to check whether the value of the
variable is less than 10 or not:

@{
 int i = 5;
 if (i < 10)
 {
 <text>i is less than 10</text>
 }
 else
 {
 <text>i is greater than 10</text>
 }
}

Activity: Printing Prime Numbers
from 1 to 100
Scenario

You're working on a project that calculates different mathematical formulae.
You start with a basic one that prints prime numbers.

Aim

Write a view that prints the prime numbers from 1 to 100 to the browser.

Steps for completion

Use a function called IsPrime along with the @function declaration, as follows:

Go to https://goo.gl/pCLuFD to access the code.

@functions
{
 public bool IsPrime(int n)
 {
 if (n <= 1) return false;
 if (n <= 3) return true;
 if (n % 2 == 0 || n % 3 == 0) return false;
 for (var i = 5; i * i <= n; i = i + 6)
 if (n % i == 0 || n % (i + 2) == 0)
 return false;
 return true;
 }
}

…
…

https://goo.gl/pCLuFD

Layout
In all the previous examples we have discussed, we did the complete view
coding in a single file. This results in a lack of flexibility and reduced
reusability.

Consider the following web page structure, where the Top Section contains
the company logo or banner and the Side Section contains links to various
sections of the site. The Content Section changes for every page:

If we code the complete content in a single view, we may have to duplicate
the Top Section and Side Section on every page. If we want to change
anything in the Side Section, we will have to change all the files. This
clearly shows that a single view file is not the best solution.

The layout comes to the rescue in this scenario, defining the site structure,
which can be reused across all web pages. The layout does not need to have
a top section or side section; it can contain a simple HTML structure, where
you can have common content and the body content will be rendered from
the individual view.

We can use HTML frames instead of the layout. However, when we use
HTML frames, each frame becomes isolated, appearing as completely
separate pages.

Building our First Layout
In order to use the layout, follow these steps:

1. Get the name of the layout file: This information should be made
available in _ViewStart.cshtml. By convention, the names of all shared
files will start with an underscore, and this file is located directly under
the Views folder.

2. Create the layout file: By convention, the name of the file is
_Layout.cshtml and it will be located in the Shared folder. All shared
content, such as partial views, will also be available here. Partial views
will be discussed later in this chapter.

3. Create the content view file: This view file is almost the same as the
view files that we created earlier, with only one difference; only page-
specific content will be available in this file, and this means that you'll
not have any html, head, or title tags here. The folder structure looks as
follows:

The project.json file is deprecated and will be missing in new projects. After the creation
of _ViewStart.cshtml, _Layout.cshtml, and page-specific view files, the folder structure will
look like the preceding screenshot.

Creating _ViewStart.cshtml
The _ViewStart file can be used to define common view code that you want to
execute at the start of each view's rendering. Because this code executes at
the start of each view, we no longer need to explicitly set the layout in any of
our individual view files.

Right-click on the Views folder and select Add New Item from the context
menu. Then, select MVC View Start Page from the Add New Item dialog
box, as shown in the following screenshot:

When you click on the Add button, it will create a file with the following
content:

@{
 Layout = "_Layout";

}

Creating _Layout.cshtml
Create a folder called Shared within the Views folder. Then, right-click on the
Shared folder and select Add New Item from the context menu, as shown in
the following screenshot:

When you click on the Add button, it will create _Layout.cshtml with the
following content:

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
</head>
<body>
 <div>
 @RenderBody()
 </div>

</body>
</html>

The preceding layout file is simple HTML content with a couple of Razor
expressions. @ViewBag.title is used to display the title information passed from
the controller and @RenderBody is the Razor expression that calls the page-
specific view and merges that content over there.

Adding a Page-Specific View
Let's add a page-specific view. Before adding the view, we will need to add
an action method in our HomeController file, from which we will call our page-
specific view. Follow these steps to add a page-specific view:

1. Let's add an action method named Index2, as follows:

Go to https://goo.gl/xMK1zK to access the code.

public IActionResult Index2()
{
 ViewBag.Title = "This is Index2";
 return View();
}

ViewBag is used to pass information from the controller to the view.
Here, we are passing the Title information from the action method to
the view. Remember, ViewBag and ViewData are key value collections
that you can fill from your controller and use from your view side.
ViewBag is a dynamic object, whereas ViewData is a string key-value pair.

2. Now, right-click on the Views folder, navigate to Add | New Item,
select MVC View Page, and save the file as Index2.cshtml. In the
generated view, we've added simple Hello text. This text will be
rendered in the body of the layout page. The complete code of the view
file is as follows:

Go to https://goo.gl/vePWui to access the code.

@*
For more information on enabling MVC for empty projects,
visit https://go.microsoft.com/fwlink/?LinkID=397860
*@
@{
}
Hello. This text will be rendered in body of the layout
page

https://goo.gl/xMK1zK
https://goo.gl/vePWui
https://go.microsoft.com/fwlink/?LinkID=397860

3. Everything is set now. Run the application and type the URL
http://localhost:50132/Home/Index2 in the browser.

The port number after the localhost may vary when you run the application from your
PC.

You will get this output:

As expected, you'll see the text shown in the preceding screenshot.
However, our point is not about the text, it's about the structure of the
generated HTML content.

4. View the source by pressing Ctrl + U (on the Chrome browser in
Windows). You'll see the following HTML content:

The top content (the html, head, body, and div opening tags) and bottom
content (the html, body, and div closing tags) come from the layout file
and the text comes from the view specific to the page.

Activity: Creating Another Layout
and Changing the View to That
Layout
Scenario

You've created a layout for your website. You're required now to create
another layout and change the view to that layout by your company.

Aim

To create another layout and then dynamically change the view to that
layout when we hit our action method.

Steps for completion

1. First, we write the following code to our action method:

Go to https://goo.gl/Jo2NQu to access the code.

public IActionResult Index()
{
 var view = View();
 view.ViewData["Layout"] =
 "~/Views/Shared/_Another.cshtml";
 return view;
}

2. Then, we modify our _ViewStart.cshtml file, as follows:

Go to https://goo.gl/WQqWvn to access the code.

@{
 Layout = (string)ViewData["Layout"] ?? "_Layout";
}

We have dynamically changed our layout!

https://goo.gl/Jo2NQu
https://goo.gl/WQqWvn

Generating HTML
As discussed in Chapter 1, Setting the Stage, browsers can understand only
HTML, CSS, and JavaScript, irrespective of the technology that you use to
build the web application. This holds true when building the application in
ASP.NET MVC as well.

Most applications get the user input, process the input, and then store the
required information in the database to retrieve it later. In the context of
web applications, HTML form elements are used to get user input.

The HTML Helpers and Tag Helpers are a couple of ways to generate
HTML elements in ASP.NET Core.

HTML helpers are server-side methods that aid in the generation of HTML
elements that can be understood by browsers. HTML helpers were the
primary method of generating HTML elements up until ASP.NET MVC 5.

Tag Helpers, introduced in ASP.NET Core, also produce HTML elements.
Tag Helpers, which we will discuss in a later section of this chapter, look
just like HTML elements, where you add attributes to identify them as Tag
Helpers. The advantage of using Tag Helpers over HTML helpers is that
user interface designers/engineers do not need to worry about Razor code;
they just code with HTML elements and additional attributes.

Before discussing HTML helpers and Tag Helpers, let's take a step back and
talk about why we need them in the first place.

Generating HTML using a Simple
Form
Consider a simple form, as shown in the following screenshot, where we
would like to get the user's name and their age. If the user enters their age
and it is equal to or greater than 18, we will display You are eligible to vote!
If not, we will display You are not eligible to vote now:

The following is the HTML code to show the preceding simple form:

Go to https://goo.gl/f59Ep8 to access the code.

<form>
 <table>
 <tr>
 <td>
 <label for="txtName">Name</label>
 </td>
…
…
 <td colspan="2">
 <input type="submit" />
 </td>
 </tr>
 </table>
</form>

This method of coding HTML elements directly is time-consuming and
error-prone. For example, in the preceding form, the label and input HTML
elements refer to the same element (txtName in the first group and txtAge in
the second group). If we hand-code the HTML element, there is the
possibility of a typo error in building the HTML element.

https://goo.gl/f59Ep8

HTML Helpers
HTML Helpers are server-side methods that generate HTML for you.

Generating a form using HTML
Helpers
We can generate the same form using HTML Helpers as follows
(HTML.BeginForm, @Html.Label, and @Html.TextBox generate the HTML form, label,
and textbox elements, respectively):

@using (Html.BeginForm())
{
 <table>
 <tr>
 <td>@Html.Label("Name")</td>
 <td>@Html.TextBox("txtName")</td>
 </tr>
 <tr>
 <td>@Html.Label("Age")</td>
 <td>@Html.TextBox("txtAge")</td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value="Submit">
 </td>
 </tr>
 </table>
}

The form tag will automatically close when you use the block.

The following screenshot gives a glimpse of the task of HTML Helpers:

You might wonder why we need to use HTML Helpers when we can write
the HTML code manually. Things will become more complex when we pass
the model from the controller to the view. Using HTML Helpers, we can
directly build form elements from model files so that they will pick the
names from the models that you are using.

For example, let's create a folder called Models and a class called Person. This
class will act as a model, as shown in the following screenshot:

The Person class is just a POCO (Plain Old C# Object) class and will act as
a model. The complete code for this class is as follows:

Go to https://goo.gl/UBmSdM to access the code.

public class Person
{
 public int PersonId { get; set; }
 public string Name { get; set; }
 public int Age { get; set; }
}

Let's create a new action method called ValidateAge. In this method, we will
create an empty Person class and pass the model to the view. We will also
create a dynamic property called Title in ViewBag so that we can display this
value in the view:

Go to https://goo.gl/xCkyeY to access the code.

[HttpGet]
public IActionResult ValidateAge()
{
 ViewBag.Title = "Validate Age for voting";
 Person person1 = new Person();
 return View(person1);
}

https://goo.gl/UBmSdM
https://goo.gl/xCkyeY

In the view, create the form using the following HTML Helpers:

Go to https://goo.gl/hnkvzS to access the code.

@model Lesson3.Models.Person
@using (Html.BeginForm("ValidateAge", "Home", FormMethod.Post))
{
 <table>
 <tr>
 <td>@Html.LabelFor(Model => Model.Name) </td>
 <td>@Html.TextBoxFor(Model => Model.Name) </td>
 </tr>
 <tr>
 <td>@Html.LabelFor(Model => Model.Age)</td>
 <td>@Html.TextBoxFor(Model => Model.Age)</td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value="Submit">
 </td>
 </tr>
 </table>
}

In the first line, we tell the view that we are passing the model of type Person
class. This enables us to use a strongly typed model, that is, when we type
Model and a dot, IntelliSense provides us with all the properties of the Person
class.

Strongly typed model is beneficial, besides IntelliSense because if in the future you
rename the properties of your model, you will detect these errors at compile time.

In the second line, we use the overloaded BeginForm HTML Helper, which
accepts three parameters—the action method name, the controller name, and
the Form method.

Simply put, when the user submits the form, the information should be
passed to the mentioned action of the controller.

In the LabelFor and TextBoxFor HTML Helpers, we are just passing model
properties (name and age); this automatically queries and gets the model
properties and builds the respective HTML elements. This is one of the
primary advantages of using HTML Helpers. Without using HTML Helpers,
this process might become complex.

https://goo.gl/hnkvzS

Now, let's write the respective POST action method in the same way. In the
following POST action method, based on the age entered in the form, we set
the dynamic property as Message:

Go to https://goo.gl/e4cB6j to access the code.

[HttpPost]
public IActionResult ValidateAge(Person person1)
{
 if (person1.Age >= 18)
 {
 ViewBag.Message = "You are eligible to Vote!";
 }
 else
 {
 ViewBag.Message = "Sorry.You are not old enough to vote!";
 }
 return View();
}

We are using POST instead of GET because our goal is not to retrieve data,
but to post and process data on the server side.

It should be noted that both the GET and POST action methods refer to the same
view—ValidateAge.cshtml. Add the following content to the view just above the
form element:

Go to https://goo.gl/6Cx4fg to access the code.

@if (ViewBag.Message != null)
{
 @ViewBag.Message
}

Once the user submits the form, the POST action method sets the dynamic
Message property in ViewBag. However, the value of this property will be null
when the view is rendered as part of the GET request. If the value is not null,
insert the message at the top of the page.

When you run the application, you'll get the following output:

https://goo.gl/e4cB6j
https://goo.gl/6Cx4fg

Activity: Making Use of a
Checkbox
Scenario

Your fields for your web page is ready. Now, you're asked to make use of a
checkbox for the age option instead of entering the age, as shown:

Aim

Make use of a checkbox for the age option instead of entering the age.

Steps for completion

1. Use the following code to change your view:

Go to https://goo.gl/WtzFSg to access the code.

@model Activity3C1.Models.Person
@if (ViewBag.Message != null)
{
 @ViewBag.Message
}
@{
}
@using (Html.BeginForm("ValidateAge", "Home",
FormMethod.Post))
{
 <table>
 <tr>
 <td>@Html.LabelFor(Model => Model.Name) </td>
 <td>@Html.TextBoxFor(Model => Model.Name) </td>
 </tr>

https://goo.gl/WtzFSg

…
…
 </table>
}

2. Change your action using the following code:

Go to https://goo.gl/Fqkrg3 to access the code.

[HttpPost]
public IActionResult ValidateAge(Person person1)
{
 if(Convert.ToBoolean(
 Request.Form["OlderThan18"][0]))
 {
 ViewData["OlderThan18"] = true;
 ViewBag.Message = "You are eligible to Vote!";
 }
 else
 {
 ViewBag.Message = "Sorry.You are not old enough to vote!";
 }
 return View();
}

The reason we use Request.Form["OlderThan18"][0] is that, by default, the
checkbox helper creates a hidden form, meaning that we get a false value if
the checkbox is unchecked. As HTML, by default, does not send a value for
unchecked checkboxes, we also fill our ViewBag so that we can retain our
value.

https://goo.gl/Fqkrg3

Partial View
Partial views are views that can be reused across your application. Partial
views can be thought of as pluggable, reusable blocks that you can call from
anywhere and have the content of the partial view displayed. The difference
between layouts and partial view is that layouts surround our pages, whereas
partial views are contained within our pages.

Consider the following structure of a web page—it's the same layout page
that we used earlier, but with a couple of changes. The Latest News block
has been added to the Side Section and the Login block has been added to
the Top Section. These blocks are not restricted to the Top Section or Side
Section and can be used anywhere in your application, including your
Content Section, as shown in the following figure:

These partial views are not restricted to static content and can contain form
elements. In the preceding screenshot, the Latest News partial view contains
the text content and the login partial view contains form elements to get an
e-mail ID and password.

The framework does not restrict the location of the partial view. However, by
convention, if your partial view will be used only by your controller, you can
create that partial view in the controller-specific Views folder. For example, if
your partial view will only be used in the HomeController file, you can create
that partial view in the Views folder under Home.

Let's take a look at how to create and use a partial view.

As discussed earlier, a partial view is just like a normal view. So, we will
create a partial view in the same way we created a normal view.

Right-click on the Shared folder and navigate to Add | New Item. By
convention, as with all shared content, the name of the partial view will also
start with "_"(underscore), as shown in the following screenshot:

We are creating this partial view based on the assumption that it can be used from
anywhere in the application.

To add simple static content—text and a simple table—in the generated
partial view, use the following code snippet:

This content and below table is coming from partial view
<table border="1">
 <tr>
 <th>Employee No</th>
 <th>Employee Name</th>
 </tr>
 <tr>
 <td>10012</td>
 <td>Jon Skeet</td>
 </tr>
 <tr>
 <td>10013</td>
 <td>Scott Guthrie</td>
 </tr>
</table>

Calling a Partial View
A partial view can be called using the @Html.Partial HTML helper.

In our case, we will be calling the partial view from the Index2.cshtml file. The
parameter that you pass will be the name of the partial file. It will search for
the partial view by that name and render that complete content as part of the
Index2.cshtml file.

The content of the Index2.html file will now be as follows:

Go to https://goo.gl/1nRe4M to access the code.

Hello. This text will be rendered in body of the layout page

@Html.Partial("_PartialHelloWorld")

Now, run the application and access the URL http://localhost:50132/Home/Index2.
You'll see the following output:

Also, look at the other overloads of @Html.Partial by right-clicking and
selecting Peek Definition. This will allow you to pass a model or a copy of

https://goo.gl/1nRe4M

ViewBag. We say a copy because changes to the bag within the partial view do
not propagate back to the parent.

Activity: Working with Static Data
Scenario

You're working on implementing the MVC pattern in your project. You
want to generate static data from the action and pass it to the partial view as
a model.

Aim

Generate static data from the action and pass it to the partial view as a
model.

Steps for completion

1. We first create an Employee model object:

Go to https://goo.gl/j9N4BV to access the code.

public class Employee
{
 public int Id { get; set; }
 public string Name { get; set; }
}

2. Then we return the data from the action:

Go to https://goo.gl/hAuXfB to access the code.

public IActionResult Index2()
{
 var employees = new List<Employee>
 {
 new Employee { Id = 10012 , Name = "John Skeet"},
 new Employee { Id = 10013 , Name = "Scott Guthrie"},
 };
 return View(employees);
}

3. We then pass the data to the partial view from Index2.cshtml, as follows:

https://goo.gl/j9N4BV
https://goo.gl/hAuXfB

Go to https://goo.gl/ZYirD8 to access the code.

@model List<Activity3D1.Models.Employee>
Hello. This text will be rendered in body of the layout
page

@Html.Partial("_PartialHelloWorld", @Model)

4. And finally, render the HTML from the partial view:

Go to https://goo.gl/cj2aeR to access the code.

@model List<Activity3D1.Models.Employee>
This content and below table is coming from partial
view
<table border="1">
 <tr>
 <th>Employee No</th>
 <th>Employee Name</th>
 </tr>
 @{
 foreach (var employee in Model)
 {
 <tr>
 <td>@employee.Id</td>
 <td>@employee.Name</td>
 </tr>
 }
 }
</table>

https://goo.gl/ZYirD8
https://goo.gl/cj2aeR

View Components
View components are a new feature introduced in ASP.NET Core. They are
similar to partial views; however, they are more powerful in nature.

When you use partial views, you have a dependency on the controller.
However, when you use the ViewComponent attribute, you do not have to
depend on the controller. So, we are able to establish a separation of
concerns and have better testability. Even though the existing partial view
HTML Helper is still supported, it is preferable to use the view component
whenever you want to show a reusable piece of information when you are
using .NET Core.

Creating a View Component
You can create a view component using any of the following methods:

Create a class by deriving one from the ViewComponent attribute
Enhance a class with the [ViewComponent] attribute or derive it from the
class that has the [ViewComponent] attribute
Use the convention by creating a class that ends with a suffix
ViewComponent attribute

Whichever option you choose, the view component should be a public, non-
nested, and non-abstract class.

As with controllers, you can use dependency injection (via a constructor) in
the ViewComponent attribute too. As the ViewComponent attribute is separate from
the controller life cycle, you may not be able to use the action filters in
ViewComponents.

There is a method called Invoke (or InvokeAsync, the asynchronous equivalent
of Invoke), that will return the IComponentViewResultinterface. This method is
similar to the action method of the controller that will return the view.

Creating a ViewComponent
Attribute
Follow these steps to create a ViewComponent attribute:

1. Create a new folder called ViewComponents in your project and a new class
called SimpleViewComponent, as shown in the following screenshot:

The SimpleViewComponent file that we created will look like the
following:

using Microsoft.AspNetCore.Mvc;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
namespace Lesson3.ViewComponents

{
 public class SimpleViewComponent : ViewComponent
 {
 public IViewComponentResult Invoke()
 {
...
...
 }
 }
}

Go to https://goo.gl/4KAXW8 to access the code.

2. We have just a couple of methods: one to populate the data and the
Invoke method, where we will render the view. Once you have created
the ViewComponent attribute, you will need to include the ViewComponent
namespace in the _ViewImports.cshtml file under Views so that the
ViewComponents attributes are available for all the views. The highlighted
code snippet in the following is added to the view:

Go to https://goo.gl/pK9tau to access the code.

@using Lesson3
@using Lesson3.ViewComponents
@addTagHelper "*, Microsoft.AspNet.Mvc.TagHelpers"

3. We have created the ViewComponents and made them available to all of the
views. A simple action method in the HomeController file just returns the
view:

Go to https://goo.gl/EYmx7M to access the code.

public ActionResult Sample()
{
 return View();
}

4. In the associated view, we can invoke the component, as shown in the
following code snippet:

Go to https://goo.gl/cbQnR3 to access the code.

<p>
 This is a sample web page

 <div>
 @await Component.InvokeAsync("Simple")

https://goo.gl/4KAXW8
https://goo.gl/pK9tau
https://goo.gl/EYmx7M
https://goo.gl/cbQnR3

 </div>
</p>

When you invoke the component, it will search in the following two
folders:

The <view name> folder under Views\Shared\Components\
<view_component_name>
The <view_name> folder under Views\Shared\Components\
<view_component_name>

5. The default view name of the view component is Default, which makes
your filename for the view Default.cshtml. So, we will need to create the
Default.cshtml file in the Views\Shared\Simple\Default.cshtml folder, as shown
in the following screenshot:

Go to https://goo.gl/ELUVkG to access the code.

In the view (the Default.cshtml file) of the ViewComponent file, we are just
iterating the items in the model and displaying them as an unordered
list item, as shown in the following code:

@model IEnumerable<string>
<h3> Sample list</h3>

 @foreach (var item in Model)
 {
 @item
 }

https://goo.gl/ELUVkG

When you run the application and access the URL
(http://localhost:50132/Home/Sample), you should see the following output:

The first line, This is a sample web page, comes from the parent view file
(sample.cshtml), whereas the subsequent list comes from the ViewComponent
attribute.

The ViewComponent attributes are usually referred to in the views. However, if
you want to call the ViewComponent directly from your controller, you can do so.

We call the Sample action method to call the Simple ViewComponent directly
instead of calling it through another view, as follows:

Go to https://goo.gl/X6e2Xm to access the code.

public ActionResult Sample()
{
 return View("Simple");
}

Thus, these view components have far more flexibility and features, such as
dependency injection, when compared to old HTML partial views. This
ensures view components are separately testable.

https://goo.gl/X6e2Xm

Activity: Passing a String as
Additional Data
Aim

To pass additional data to our view component at the time of invocation by
using one of its overloads. So, let's pass the Four string as additional data so
that the output will be as shown in the following screenshot:

Steps for completion

1. We modify our view as follows:

Go to https://goo.gl/rxkDYt to access the code.

<p>
 This is a sample web page

 <div>
 @await Component.InvokeAsync("Simple", new { additionalData = "Four" })
 </div>
</p>

2. Then, modify our ViewComponent as follows:

Go to https://goo.gl/XhCkmZ to access the code.

using Microsoft.AspNetCore.Mvc;
using System;
using System.Collections.Generic;
using System.Linq;

https://goo.gl/rxkDYt
https://goo.gl/XhCkmZ

using System.Threading.Tasks;
namespace Lesson3.ViewComponents
{
 public class SimpleViewComponent : ViewComponent
 {
…
…
 }
}

Tag Helpers
Tag Helpers are a new feature in ASP.NET Core; they help generate HTML
elements. In HTML helpers, we will write C#/Razor code to generate
HTML. The disadvantage associated with this approach is that many
frontend engineers will not know C#/Razor code; they work with plain
HTML, CSS, and JavaScript. Tag Helpers look just like HTML code, but
have all the features of server-side rendering. You can even build custom
Tag Helpers as per your needs. The advantage of Razor over Tag helpers is
that while Tag Helpers are more frontend-developer friendly, sometimes we
might need the power of Razor, as it is a powerful programming model.

Let's take a look at how to use a Tag Helper. The Tag Helpers package is
already included in the Microsoft.AspNet.Core.All NuGet package.

Remember, we have already added Tag Helpers support to the ViewImports
file in the preceding section.

Had we included the _ViewImports.cshtml file under the Home folder, Tag
Helpers would be available only for the views under the Home folder. So,
we should use the root of the view folder.

Let's add a simple action method called Index3 in the HomeController file, and
in the associated view, we will use Tag Helpers, as shown in the following
code:

Go to https://goo.gl/zwYvmh to access the code.

public IActionResult Index3()
{
 ViewBag.Title = "This is Index3";
 Person person = new Person();
 return View(person);
}

Add the corresponding view (the Index3.cshtml file) for the Index3 action
method with the following code:

https://goo.gl/zwYvmh

Go to https://goo.gl/s545Nw to access the code.

@model Lesson3.Models.Person
<form asp-controller="Home" asp-action="Index3">
 <table>
 <tr>
 <td><label asp-for ="Name">Name</label></td>
 <td><input asp-for="Name" /></td>
 </tr>
 <tr>
 <td><label asp-for ="Age">Age</label></td>
 <td><input asp-for ="Age" /></td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value="Submit"/></td>
 </tr>
 </table>
</form>

The following are a few things that you need to note in the preceding code
for the use of Tag Helpers:

All the form elements look just like standard HTML elements, with
just a few changes to the attributes. This enables frontend developers
to work independently without learning HTML/Razor code, thus more
easily achieving a separation of concerns.
The first line of the preceding view indicates the type of model data
passed to the view from the controller.
The form element has a couple of attributes, named asp-controller and
asp-action, which represent controller names and action method names
respectively.
The label and input Tag Helpers are just like HTML elements, with just
an additional asp-for attribute. The values for these attributes represent
the model properties. You can take advantage of IntelliSense when
entering the values for these attributes.

https://goo.gl/s545Nw
https://goo.gl/s545Nw

Custom Tag Helpers
ASP.NET Core provides many built-in Tag Helpers to help you create the
necessary HTML elements for many scenarios. However, they do not cover
all scenarios. Sometimes, you may want to make some changes to a
generated HTML element, or you may want to create an HTML element
with new properties, or a new HTML element altogether. You are not
restricted to using the existing Tag Helpers in the ASP. NET Core
application. You can create your own Tag Helper if the existing Tag Helpers
do not suit your needs. Let's create a simple Tag Helper to create an email
link:

There are a couple of ways to create Tag Helpers: by implementing the
ITagHelper interface or inheriting the TagHelper class. The TagHelper class has a
Process method that you can override to write custom Tag Helpers. The
TagHelper class also has the TagHelperOutputparameter, which you can use to write
and generate the desired output HTML. So, it is preferable to create Tag
Helpers by inheriting from the TagHelper class.

Our objective is to write a custom email Tag Helper so that when someone
uses that Tag Helper, which is <email mailTo="mugil@greatestretailstore.com">
</email>, it is converted to the following line of code:

Drop us a mail

Creating a Custom Tag Helper
The following are the steps that need to be performed to create a custom Tag
Helper in the ASP.NET Core application:

1. Create a folder called TagHelpers and add a new item named
EmailTagHelper.cs. By convention, all Tag Helper classes should end with
TagHelper, even though we can override this convention:

2. Once you have created the file, you will need to override the Process
method to generate the desired HTML output:

Go to https://goo.gl/xNJoqB to access the code.

using Microsoft.AspNetCore.Razor.TagHelpers;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
namespace Lesson3.TagHelpers
{
 public class EmailTagHelper : TagHelper
 {
 public override void Process(TagHelperContext context,
…
…
 }
}

https://goo.gl/xNJoqB

The parameters used in the preceding code are explained as follows:

The context parameter provides all the information that you
supplied in the Tag Helper. For example, in the
<emailmailTo="mugil@greatestretailstore.com"></email> Tag Helper, you
can get the mailTo attribute and its associated value from the context
parameter. In the first line of the preceding Process method, we will
get the mailTo attribute value and use that value to create an
attribute in the generated HTML (anchor tag).
The output parameter is of type TagHelperOutput, which is used to
generate the desired HTML output.
The output.Content.SetContent parameter will set the text that is to be
displayed for the anchor tag.

3. We have created the email Tag Helper. Now, we have to make it
available to our views so that we can make use of that Tag Helper in
them. Edit Views_ViewImports.cshtml to include the namespace of the
TagHelpers and add the associated TagHelpers. In the following
_ViewImports.cshtml file, we have added the content highlighted in bold:

@using Lesson3
@using Lesson3.ViewComponents
@addTagHelper "*, Microsoft.AspNet.Mvc.TagHelpers"
@addTagHelper "*, Lesson3"

The * symbol in the following line tells the view engine to include all
the TagHelpers in the Lesson3 namespace:

@addTagHelper "*, Lesson3"

You can only include specific TagHelpers. For example, the following
line will include only the EmailTagHelper so that it is available to our
views:

@addTagHelper " Lesson3.TagHelpers.EmailTagHelper, Lesson3"

4. Let's create a simple action method in our Home controller. In the view
of the associated action method, we will use the email Tag Helper:

public IActionResult AboutUs()
{

 return View();
}

The following is the view of the preceding AboutUs action method:

<h3>About Us</h3>
We are one of the biggest electronics retail store serving
millions of
people across the nation. blah.blah. blah

If you want to hear great offers from us
<email mailTo="mugil@greatestretailstore.com"></email>

5. When you run the application and access the
http://localhost:50132/Home/AboutUs URL, you will see the following output:

Here, we created an anchor tag with the mailto attribute and the email
value as the href attribute value.

We open the Developer Tools window (Press F12 to do this and
select the DOM Explorer tab) to see the generated HTML.

You can find more samples at https://github.com/dpaquette/TagHelperSamples.

https://github.com/dpaquette/TagHelperSamples

Activity: Replacing Email Tag Helpers
Scenario

You're maintaining an application for your company. The company wants to get rid
of all the email Tag Helpers from the code. How will you do it?

Aim

Replace the EmailTagHelper so that we can use it like the following:

<email> mugil@greatestretailstore.com </email>

Steps for completion

Use the following code:

Go to https://goo.gl/VCdwpB to access the code.
We can still use HTML attributes on Tag Helpers, as in:
<email style="color:red" mailTo="mugil@greatestretailstore.com"></email>

This will render the link in red.

public class EmailTagHelper : TagHelper
{
 public override async Task ProcessAsync(TagHelperContext context, TagHelperOutput output)
...
...
}

https://goo.gl/VCdwpB

Summary
In this chapter, you learned what a view engine is and how to build a view
using the Razor view engine. We also discussed the different programming
constructs that you can make use of in Razor to produce the desired HTML
output. Then, you learned about layout and how to provide a consistent site
structure across all of the pages in your ASP.NET MVC application. Later
in the chapter, we discussed how to promote reusability using partial views,
with an example. Finally, you learned how to use Tag Helpers to produce
clean HTML.

Models
Data is at the heart of every application. A user enters data into the
application, edits the entered data, and searches the data. We can even say
that an application that we build is just an interface for the operations that
we perform on the application data. So, it is absolutely necessary for any
framework to provide a mechanism to make data operations easier and
more manageable. Models in ASP.NET MVC are used to represent the
business domain data.

By the end of this chapter, you will be able to:

Explain models and their purpose
Create a simple model and use it in the controller and views of the
ASP.NET MVC application
Create a model specific to a ViewModel
Use data flow in an ASP.NET MVC application in the context of
models and ViewModels
Explain the purpose of Entity Framework along with its features and
benefits
Add, update, and delete data using Entity Framework
Use Entity Framework in ASP.NET MVC applications

Introduction to Models
Models are simple POCO (Plain Old C# Objects) classes representing
your business domain data. They basically model real-world entities. We
can consider them as code reflections of real-world concepts and entities.
For an e-commerce business, model classes would be Product, Order, and
Inventory. If you are building an application for a university, model classes
would be Student, Teacher, and Subject. Models represent the business domain
data in your application and they are not aware of the underlying database
that is being used in your application. In fact, you don't even need a
database to work with models.

Creating an ASP.NET Core Application
Here are the steps to create an ASP.NET Core application:

1. Make sure to create an ASP.NET Core application with an empty template.
2. Create a Controllers folder and create a HomeController with a single Index action method.
3. Create the following folder/files for the ViewModel:

Views: This folder is inside your project.
Views_ViewStart.cshtml: This identifies the name of the Layout file.
Views\Shared: This folder holds all the shared view components for your application.
Shared_Layout.cshtml: This file identifies how your web application structure should look.
Views\Home: This folder contains all of the Views of your HomeController.
Views\Home\Index.cshtml: This is the view corresponding to the Index action method of HomeController.

4. And make sure your Startup.cs looks like the following:

Go to https://goo.gl/edbYJx to access the code.

public class Startup
{
// This method gets called by the runtime. Use this method to add services to the container.
// For more information on how to configure your application, visit
https://go.microsoft.com/fwlink/?LinkID=398940

public void ConfigureServices(IServiceCollection services)
…
…
}

Now, we have created an ASP.NET Core application with Controllers and Views.

Let us create a Models folder in our application; this folder will contain all of your model files. In a real-world
application, this folder and the respective model files would reside in separate projects. For the sake of
simplicity, we are keeping the Models folder and its files in the same project.

Let us create a simple Product model class, in the Models folder:

public class Product
{
 public int ProductId { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
}

This Product model class is no different from any other C# class and contains a few properties about the
product.

Update the Index action method in HomeController to use the Product model, as shown in the following code
snippet. We are building the model data and passing the model data to the view so that it can be shown to the
users. However, it is NOT recommended to build the model data in the controller's action methods as it
violates the separation of concerns. For the sake of simplicity only, we are building the model data in an
action method:

Go to https://goo.gl/Pobwwi to access the code.

public IActionResult Index()
{
 /* Build the products model. It is NOT RECOMMENDED to build models in Controller action methods like this.
 * In real world application, these models and the respective Data Access Layer(DAL) would be in separate projects.
 * We are creating it here to make things simpler to explain */
 List<Product> Products = new List<Product>
 {

https://goo.gl/edbYJx
https://go.microsoft.com/fwlink/?LinkID=398940
https://goo.gl/Pobwwi

…
…
 };
 return View(Products);
}

Update the corresponding Index view method to use the model data loop through each product and show it as
an unordered list item. The @model in the first line represents the model metadata, the type of data being passed
to the view. The model in the foreach loop represents the actual data itself, a list of products in our case:

When copying from GitHub remember to remove the comments before the return statement and the curly brace.

@model List<Lesson4.Models.Product>

 @foreach (var Product in Model)
 {
 @Product.Name
 }

When you run the application, you'll get the following output:

We have successfully created a model and have used it in our controller and view.

Let us create a comparatively complex model class, Order (Order.cs in the Models folder), which contains a list of
products and their total amount:

Go to https://goo.gl/p97rGp to access the code.

public class Order
{
 public int OrderId { get; set; }
 public List<Product> Products { get; set; }
 public decimal Total { get; set; }
}

We choose decimal instead of double for the Total field because double is stored as binary in memory for
efficiency. However, this makes some decimal numbers not representable, thus the computer does some
rounding to approximate. On the other hand, decimal is stored exactly as we humans calculate. So decimals
are good for monetary values. Double is good for scientific calculations.

Here's what your folder structure will look like:

https://goo.gl/p97rGp

Now we have to update the Index action method to use the Order model. Once we build the list of products, we
are assigning the products list to the Order property and calculating the total cost of the order. These
calculations would usually be done as part of the business layer. Again, for the sake of simplicity, we are
building the data model and calculations here in the action; this should never be the case in a real–world
application.

The code highlighted in bold is the changes that we have made in the action method:

// GET: /<controller>/
public IActionResult Index()
{
…
…
 };
 Order order = new Order();
 order.Products = Products;
 order.Total = Products.Sum(product =>
 product.Price);
 return View(order);
}

The view is updated to accommodate the model changes. Model metadata (@model) is changed to indicate that
the information of Order is passed to the view instead of the list of products.

Then, we are showing the list of products in table format. Please note that all of the model data (the Order
object and its properties, in this case) can be accessed through the model. For example, the Products class can
be accessed through Model.Products and the value of the Total can be obtained through Model.Total:

Go to https://goo.gl/efhye6 to access the code.

@model Lesson4.Models.Order
<table border="1">
 <tr>
 <th>Product Name</th>
 <th>Price</th>
 </tr>
 @foreach (var Product in Model.Products)
...
...
</table>

When you run the application, you'll see the following output:

https://goo.gl/efhye6

Models Specific to a View
Component
There are scenarios where you might want to update only a few properties
in a large model or you might want to create a new model based on a few
models. In such scenarios, it is better to create a new model specific to the
view.

For example, let us assume that we are building a screen where you update
the price of the product. This simple screen may contain only three
properties: product ID, product name, and the price of the product. But the
product's model may contain more than 30 properties to hold all details of
the product, such as manufacturer, color, and size. Instead of sending the
complete model with all the properties, we can create a new model specific
to this view with only a few properties—ID, name, and price.

ViewModels
ViewModels are entities where, when you update the model, your view will
get updated automatically and vice versa. In many online articles and even
in some books, the authors refer to ViewModels when they actually mean
Models specific to the View.

In ViewModels, binding is two-way: when you update either the model or
the view, the other one will get updated automatically.

Let us consider a simple example. You have a form with various fields on the left-hand
side and print preview on the right-hand side. In this case, whatever you type in real
time in the form will be reflected immediately on the right-hand side. In such cases, you
can use pure ViewModels when you type; your ViewModel will be updated and that
ViewModel will be consumed in the right-hand side print preview. These pure
ViewModels are being used in advanced JavaScript frameworks such as KnockoutJS
and AngularJS.

In models specific to the view, we are binding in only one way, from the
model to the view. Here, we are sending a model specific to the view
instead of the generic model (which represents a business domain class).

However, in this course, we will be referring to models specific to a view as
ViewModels for brevity. Unless otherwise specified, you should read all
ViewModels as models specific to a view. So, I am making the same
mistake made by other authors (which I don't intend to do).

Using ViewModels is entirely optional.

There are few drawbacks of using ViewModels. First, you have to create a
new class for your ViewModel. Second, you need to write code that
translates from ViewModel to view and vice versa. There are frameworks to
automate this process, such as AutoMapper.

ViewModels is good practice wherever it makes sense since it reduces the
coupling.

Data Flow with Respect to a Model
The following block diagram shows the data flow in an ASP.NET MVC
application:

The two important aspects of data flow are as flows:

Data Source: This represents your application data. The application
data could reside anywhere—from full-fledged RDBMSes such as SQL
Servers to simple Excel spreadsheets, or anything in between.
Models: As previously mentioned, these represent the business domain
data for your application and are independent of the data source being
used. The same model could be used with different data sources.

We can use the Model as-is in our views to get data or to present it. In some
views, you might not need all the properties of the model. So, instead of
sending the entire model to the view, we create models specific to the view
and use them in our view. This makes things simpler.

The following is the high-level sequence of events that happens when you
store or retrieve a record in ASP.NET Core using the model:

1. Users enter the data in a form (created using views) in the application.
The fields in the form do not need to represent the complete model as

we need only a few properties in the model.
2. The entered data is passed to the controller where Model binding

happens. Model binding is the process where the data entered in the
view gets mapped to the model or ViewModel.

3. If the data is received in the ViewModel, then we will be converting the
ViewModel to the model.

4. Finally, the model data is stored in the data source.

Until now, we have been handling only in-memory data in our application. In almost all
real-world applications, some form of the database will be used for data storage, access,
and retrieval. In the next section, we will discuss Entity Framework (ORM framework),
which makes data access simpler from a .NET application.

Activity: Revising the Code to
Show Discount in the Total
Scenario

You want to revise the code so that it discounts the total sum by 10% if the
total amount is larger than 1,000 and show this discount in the total.

Aim

Revise the code to show discount in the total.

Steps for completion

1. Change the Order class, as follows:

Go to https://goo.gl/Q58VD2 to access the code.

public class Order
{
 public int OrderId { get; set; }
 public List<Product> Products { get; set; }
 public decimal Total { get; set; }
 public decimal Discount => Total > 1000M ? Total * 0.1M : Total;
}

2. Change the view, as follows:

Go to https://goo.gl/ScepWa to access the code.

@model Lesson4.Models.Order
<table border="1">
 <tr>
 <th>Product Name</th>
 <th>Price</th>
 </tr>
 @foreach (var Product in Model.Products)
 {
 <tr>
 <td>@Product.Name</td>
 <td>@Product.Price</td>

https://goo.gl/Q58VD2
https://goo.gl/ScepWa

 </tr>
 }
...
...
</table>

Model Binding
Model binding is the process of mapping the model data coming from the
view to the ViewModel parameter of the action method in the controller.

Model binding eliminates the need to read the form data manually and
assign it to the existing object. This would have been very tedious and
error-prone. Model binding can also be enhanced and customized. It is a
powerful mechanism to parse the incoming request automatically.

Let us consider a simple form with a couple of form fields: Name and EmailID.
On submission of the form, these values would be mapped to the
ViewModel object of the action method of the controller. Model binding
takes care of this mapping. The model binder looks for a match in the form
fields, query strings, and request parameters.

In the preceding example, any class with these properties would be picked
up by ModelBinder without any issues.

As the following Person class contains the Name and EmailID properties, the
model binder would not complain about using this model for mapping the
entered values in the form:

public class Person
{
 public string Name { get; set; }
 public string EmailID { get; set; }
}

The following code snippet shows how to use the Person class in the action
method:

public ActionResult Add(Person p)
{
 return View();
}

Entity Framework
If we are using a relational database, there is an impedance mismatch with
the data and our domain classes, since the data is relational whereas our
domain is composed of objects. The aim of using ORM is to eliminate (or
hide) this mismatch so that we can totally ignore the persistence problems
and instead focus on our code rather than trying to generate pesky SQL
statements. Having said that, there are many valid cases to drop back to
SQL statements, such as performance tuning cases or complex reports.

Entity Framework (EF) is the Object Relational Mapping (ORM)
framework that enables developers to work on domain-specific objects
directly for data access instead of working on database queries. This
reduces a lot of the code complexity in the data access layer of the
application.

Before discussing Entity Framework and its features, let us pause for a
moment and think about the steps that we follow when we try to save some
information to the database while using ADO.NET:

1. Construct the business domain object.
2. Create a connection to your database.
3. Open the connection.
4. Create a command object along with the command type.
5. Add the properties of your business domain object to the parameters of

the command object.
6. Execute the command that saves the data into the database.

We have to follow these six steps for common operations such as saving a
piece of data into the database.

If you are using an ORM framework such as Entity Framework, you just
need three steps:

1. Construct the business domain object.

2. Create the DbContext class for your business domain object. The instance
of the DbContext class represents the session with the database.

3. Save it to the database using the instance of the DBContext class.

You might wonder how that is possible.

As a matter of fact, in the background, Entity Framework creates a
connection to the database and executes the query to save the business
domain object to the database. To make it simple, Entity Framework writes
all the data access code for you so that you can concentrate on achieving the
business functionality of the application rather than writing the database
layer code.

Entity Framework is Independent of ASP.NET MVC

As discussed earlier, Entity Framework is an ORM framework for accessing
data and is independent of ASP.NET MVC. Entity Framework could be
used in Windows Communication Foundation (WCF) services, Web API
services, and even in console applications. You could use Entity Framework
in any type of application and make use of it to access data using objects.
The concepts and the functionalities of Entity Framework remain the same,
irrespective of the type of application that you use it with.

Now, we are going to use Entity Framework with the console application.
This allows us to concentrate on the task at hand and demonstrate the
functionalities of Entity Framework instead of working on the boilerplate
code of the ASP.NET Core application. In a later part of this chapter, we
will integrate Entity Framework with the ASP.NET Core application.

The latest version of Entity Framework for the SQL server is
EntityFrameworkCore. It brings significant changes when compared to its
previous version (Entity Framework 6). However, EntityFrameworkCore is
the recommended version when building ASP.NET Core applications, so
we will be using that version in this book.

We need a database to explain many of the features of Entity Framework. Before
continuing, please use the following link to install SQL Server 2016 Express or

(LocalDB)j or newer on your PC: https://www.microsoft.com/en-us/sql-server/sql-server-editions-exp
ress

https://www.microsoft.com/en-us/sql-server/sql-server-editions-express

Creating Console Applications with
Entity Framework
Creating a console application with Entity Framework is what we'll look into
next. Follow these steps to create a simple console application:

1. Navigate to File | New Project and select Console App (.NET Core).

2. Name the project ConsoleEF and click on OK:

Installing Entity Framework Core
NuGet Package
There are two ways to install any NuGet package in your application:

Using the NuGet Package Manager
Using the Package Manager Console

We'll look at the first option of using the NuGet Package Manager.

Using the NuGet Package Manager
People who prefer graphical interfaces can use this option:

1. Right-click on the console project and select Manage NuGet Packages
from the context menu:

2. Search for Microsoft.EntityFrameworkCore.SqlServer in the NuGet package.
Click on Install once you select

Microsoft.EntityFrameworkCore.SqlServer:

3. Once you click on Install, the NuGet Package Manager will ask you to
review the changes. Click on OK:

4. Click on I Accept in the License Acceptance window:

5. Once you click on I Accept, it will install Entity Framework with all its
dependencies. In the Output window, you will get a Finished message
once the installation is complete:

Time Elapsed: 00:00:03.0619983
========== Finished ==========
Restoring NuGet packages...
Time Elapsed: 00:00:00.3355224
========== Finished ==========

Installing Entity Framework
Commands
We need to install Entity Framework Tools package in order to perform
migration activities. Migration includes the creation of a database and its
associated tables. Any changes in the schema will also be taken care of by
migration:

As discussed earlier, we need to follow three steps in order to interact with
the database when we are using Entity Framework:

1. Create the model classes.
2. Create the DbContext class for your business domain object. The instance

of the DbContext class represents the session with the database.
3. Construct the business domain object and save it to the database using

the instance of the DBContext class.

Let us discuss each of the preceding steps in detail and try to save an object
to the database.

Creating Model Classes
The Model classes are simple POCO objects that can be used with Entity
Framework.

Let's create a POCO class for our business domain object, the Employee class
in our case. Name the new file name Employee.cs in our console application.
This Employee class contains a few properties of an employee and has no
special properties or fields to make it work with Entity Framework.

Let's take a look at the following code snippet:

public class Employee
{
 public int EmployeeId { get; set; }
 public string Name { get; set; }
 public decimal Salary { get; set; }
 public string Designation { get; set; }
}

By convention, if the property name is Id or ClassName+Id, it will be
considered as a primary key by the Entity Framework while creating the
database table.

Properties with string data types will be created as fields of the nvarchar(max)
type. However, we can override this behavior by using annotations, which
will be discussed later.

Creating the DbContext Class
The instance of the DbContext class represents the session to the database and
this DbContext class does most of the heavy lifting of your data access for
your application. Create a new class named EmployeeDbContext with the
following content:

Go to https://goo.gl/hbju3w to access the code.

using Microsoft.EntityFrameworkCore;
namespace ConsoleEF
{
 public class EmployeeDbContext : DbContext
 {
 public DbSet<Employee> Employees { get; set; }
 protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
 {
 optionsBuilder.UseSqlServer(@"Data Source=
 (localdb)\MSSQLLocalDB;Initial Catalog=
 EFConsole;Integrated Security=True;Connect
 Timeout=30;
 Encrypt=False;TrustServerCertificate=True;
 ApplicationIntent=ReadWrite;
 MultiSubnetFailover=False");
 }
}

There are a few things to be noted in the preceding code snippet:

Include the Microsoft.EntityFrameworkCore namespace as the DbContext class
available in this namespace. Our connection string is currently
hardcoded but we can easily make it configurable.
In order to use the DbContext API, a class has to be created that inherits
from the DbContext class so that we can access methods of the DbContext
API. We have created the EmployeeDbContext class, which was inherited
from DbContext class.
DbSet is a class that allows operations of Entity Framework to be
performed for a given Entity type. We need to create the DbSet object
for each of the Entity types that we use in our application. In this
example, we are using only one DbSet object as we are working with the
Employee class.

https://goo.gl/hbju3w

Creating a Migration
Migration is the process of recording all the changes of your database.
Writing migrations ensures that our database schema also evolves together
with our application. It also solves versioning problems. If we have 10
customers and each is running a different version of our application, we
don't have to track which schema is installed to which customer. Thanks to
the automated process of migrations and migrations being part of the code
itself, all we have to do is to run the migrations and it is guaranteed that the
database schema will be in the correct state.

Follow these steps to create a migration:

1. Add-Migration is Entity Framework command for adding a migration, as
shown here:

2. Once you add the migration, you can revoke the changes by executing
the Remove-Migration Entity Framework command. This is what the
Migrations directory looks like:

3. Update the database by issuing Entity Framework command Update-
Database, which updates the database tables as per the information
available in the migration. As we have installed the
EntityFramework.Commands package earlier, these commands will be
available for the application:

4. Once you update the database, you can see the changes in the database
by checking the SQL Server Object Explorer from the View menu:

5. Perform the database operation to save the business domain object in
the database. You can create the database manually or, if the database is

not available, it will create one for you. The Main method is updated with
the following code:

using System;
namespace ConsoleEF
{
 class Program
 {
 static void Main(string[] args)
 {
 AddEmployee();
 }
 static void AddEmployee()
 {
 using (var db = new EmployeeDbContext())
 {
 Employee employee = new Employee
 {
 Designation = "Software Engineer",
 Name = "Scott",
 Salary = 5600
 };
 db.Employees.Add(employee);
 int recordsInserted = db.SaveChanges();
 Console.WriteLine("Number of records inserted:" + recordsInserted);
 Console.ReadLine();
 }
 }
 }
}

First, we are constructing the business domain object. Then, we are adding
the constructed Employee object to the employee's DbSet of the DbContext class.
Finally, we are calling the SaveChanges method DbContext API, which will save
all the pending changes to the database.

You might be wondering how it can save it to the database when we have not
even provided it with the connection string.

Let us discuss what happens behind the scenes when we run the program:

When you make changes to any of the DbSet collection, Entity
Framework checks whether the database exists. If it does not exist, it
creates a new one using the <Namespace of DbContextName> pattern. In our
case, a database called EF6.EmployeeDbContext would be created.
Then, it creates database tables for the entities declared in DbSet. By
convention, Entity Framework uses the pluralized form of Entity for the
table names. As we have declared DbSet for the Employee entity, Entity

Framework creates a pluralized form of Employee and creates the table
named Employees.

The creation of the database and tables happens when the following code is
executed:

db.Employees.Add(employee);

When the SaveChanges method is executed, the data in the Employee object will
get saved to the database and return the number of records affected. In the
preceding case, it returns 1.

When you run the application again, the first two steps mentioned previously
will be skipped as the database and table will have already been created.

When you query the database, you can see the newly inserted record:

Here's the screenshot of the queried data:

How the SaveChanges Method
Works
When we are making changes, Entity Framework tracks the state of each of
the objects and executes the appropriate query when the SaveChanges method is
called. This relinquishes the developer from tracking what changed when
changes for objects could be happening at different places of the code. It
would have been very difficult for developers to track these changes by
themselves.

The SaveChanges approach buys you transparent persistence, that is, your
application would set data on a business object, and somewhere deep down
below, in a lower layer, it would be saved, but automatically. The SaveChanges
method is just flushing those tracked changes to the database, keeping
memory and DB in sync.

For example, when we add an Employee object to the employees' collection
(DbSet), this object is being tracked as Entity in the Addedstate. When SaveChanges
is called, Entity Framework creates an insert query for it and executes it. The
same is the case with updating and deleting the object. Entity Framework
sets the Entity state of the respective objects to Modified and Deleted. When
SaveChanges is called, it creates and executes the Update and Delete queries:

The preceding diagram explains how the SaveChanges method works at a high
level for different types of change. We have a couple of POCO objects
(Object 1 and Object 2), which have been added to the employees DbSet
object. Let us assume Object 3 and Object 4 have been modified and Object
5 and Object 6 are in the Deleted state. When you call the SaveChanges method,
it creates three sets of queries. The first set of queries is for the addition of
objects, resulting in the insert queries getting executed against the database.
In the second set of queries, Update queries are created and executed for the
objects whose state is modified. Finally, Delete queries are executed for all
the Deleted state objects.

Updating the Record
Let us try to update the salary of an inserted employee record using Entity
Framework:

Go to https://goo.gl/4k5J6a to access the code.

static void UpdateSalary()
{
 using (var db = new EmployeeDbContext())
 {
 Employee employee = db.Employees.Where(emp
 => emp.EmployeeId == 1).FirstOrDefault();
 if (employee != null)
 {
 employee.Salary = 6500;
 int recordsUpdated = db.SaveChanges();
 Console.WriteLine("Records updated:" +recordsUpdated);
 Console.ReadLine();
 }
 }
}

In the preceding method, we find the employee with EmployeeId = 1. Then, we
update the salary of the employee to 6500 and save the employee object to the
database. Please note that, in the preceding method, we interact with the
database a couple of times—once to find the correct employee record (read
operation) and again to update the record (update operation):

static void Main(string[] args)
{
 UpdateSalary();
}

Also make sure you add using System.Linq; to the top of the file.

The Main method is updated to call the UpdateSalary method. When you query
the database, you should see the record with the updated information:

https://goo.gl/4k5J6a

Make sure you click on the Refresh button.

Deleting the Record
Deleting the record is a bit tricky as it involves setting the state directly. In
the following method, first we get the object and set the state of the object
to Deleted. Using db.Delete method instead of setting a state would imply the
record is deleted immediately
from the database. However, this is not the case. The actual deletion will be
pending until we call SaveChanges. Once we call the SaveChanges method, it will
generate the delete query for the object and execute it, which in turn will
eventually delete the record in the database:

Go to https://goo.gl/QgqKCM access the code.

static void DeleteEmployee()
{
 using (var db = new EmployeeDbContext())
 {
 Employee employeeToBeDeleted =
 db.Employees.Where(emp => emp.EmployeeId ==1).FirstOrDefault();
 if (employeeToBeDeleted != null)
...
...
 }
}

Make changes in the Main method and ensure it looks like this:

static void Main(string[] args)
{
 DeleteEmployee();
}

https://goo.gl/QgqKCM

Activity: Controlling the
Transaction Manually
Aim

Control the transaction manually and commit it yourself.

Steps for completion

Here's the code:

Go to https://goo.gl/Wk9RUH to access the code.

static void DeleteEmployee()
{
 using (var db = new EmployeeDbContext())
 using(var transaction = db.Database.BeginTransaction())
...
...
}

https://goo.gl/Wk9RUH

Using Entity Framework in
ASP.NET MVC Applications
There is not much difference between using Entity Framework in a console
application and the ASP.NET MVC application. Now, we are going to build
a simple application with a single screen, as shown in the following
screenshot.

In this screen, we will have a form where the user will enter the information
about the employee; once the user submits the form, the information will be
saved to the database as shown in the following screenshot:

We can create a simple model for the employee. We need to build a
ViewModel for this view, as we need to get the employee information from
the user and we also need to show a list of employees on the same screen.

The following are the step-by-step instructions to create the application for
the previously mentioned objective:

1. Create an ASP.NET Core project in Visual Studio by selecting an empty
ASP.NET Core Web application.

2. All the Entity Framework packages we need come baked in, so there is
no need to install anything.

3. Add an appsettings.json file by using Visual Studio, as shown here:

4. And change appsettings.json so that it resembles this:

{
 "ConnectionStrings":
 {
 "DefaultConnection": "Server=(localdb)

 \\MSSQLLocalDB;Database=Validation;
 Trusted_Connection=True;
 MultipleActiveResultSets=true"
 }
}

5. Configure MVC in the Startup class (Startup.cs):
In the constructor, we are building the configuration by reading the
appsettings.json file.
Add the MVC service and the Entity Framework service to the
services in the ConfigureServices method.
Configure the MVC routing in the Configure method:

Go to https://goo.gl/VezQkv to access the code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using MVCEF.Models;
namespace MVCEF
{
 public class Startup
 {
...
...
 }
}

6. Create the Models and DbContext classes.
7. Create the Models folder and add the Employee model class and

EmployeeDbContext class.
8. Create the Employee model class (Employee.cs in the Models folder):

public class Employee
{
 public int EmployeeId { get; set; }
 public string Name { get; set; }
 public decimal Salary { get; set; }
 public string Designation { get; set; }
}

9. Create EmployeeDbContext (EmployeeDbContext.cs in the Models folder):

https://goo.gl/VezQkv

Go to https://goo.gl/G9Sm11 to access the code.

using Microsoft.EntityFrameworkCore;
using MVCEF.Models;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
namespace MVCEF.Models
{
 public class EmployeeDbContext : DbContext
 {
 public EmployeeDbContext(DbContextOptions<EmployeeDbContext> options) :
 base(options)
 {
 }
 public DbSet<Employee> Employees { get; set; }
 }
}

10. Create ViewModels.

As we are going to show a list of employees and the form to add
employees in the same screen, we are going to build a model specific
to this view. This model will contain information about the list of
employees and the employee to be added.

11. Create the ViewModels folder and add EmployeeAddViewModel.

Go to https://goo.gl/Z7rSRa to access the code.

using MVCEF.Models;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
namespace MVCEF.ViewModels
{
 public class EmployeeAddViewModel
 {
 public List<Employee> EmployeesList { get; set; }
 public Employee NewEmployee { get; set; }
 }
}

This ViewModel has a couple of properties: EmployeesList and NewEmployee.
EmployeesList will contain the list of employees. This list will be
fetched from the database. NewEmployee will hold the employee
information entered by the user.

https://goo.gl/G9Sm11
https://goo.gl/Z7rSRa

12. Create Controllers to handle the incoming requests:
Create a Controllers folder and add the EmployeeController class with a
couple of action methods, one for GET and another for POST. The
Index action method corresponding to the GET action method will
be called when you access the URL (http://localhost/Employee/Index)
or when you run the application. The POST Index action method will
be called when you submit the form as the following:

Go to https://goo.gl/Yivh8J to access the code.

public IActionResult Index()
{
 EmployeeAddViewModel
 employeeAddViewModel = new EmployeeAddViewModel();
 var db = this.employeeDbContext;
 employeeAddViewModel.EmployeesList = db.Employees.ToList();
 employeeAddViewModel.NewEmployee = new Employee();
 return View(employeeAddViewModel);
}

In the preceding GET Index action method, we are creating the
ViewModel object and passing it to the view.
The following code uses the POST Index action method:

Go to https://goo.gl/gsoJnE to access the code.

[HttpPost]
public IActionResult Index(EmployeeAddViewModel employeeAddViewModel)
{
 var db = this.employeeDbContext;
 db.Employees.Add(employeeAddViewModel.NewEmployee);
 db.SaveChanges();
 //Redirect to get Index GET method
 return RedirectToAction("Index");
}

We get the NewEmployee property in the ViewModel, which contains
the user's information. Save it to the database. Once we save the
employee information to the database and we redirect the control
to the GET Index action method, the GET Index action method will
again show the form to enter the employee information and the list
of employees in table format.
Finally, we need to change the constructor so that our db context is
injected:

https://goo.gl/Yivh8J
https://goo.gl/gsoJnE

readonly EmployeeDbContext
employeeDbContext;
public EmployeeController(EmployeeDbContext employeeDbContext)
{
 this.employeeDbContext = employeeDbContext;
}
Constructor parameter EmployeeDbContext comes from
services.AddEntityFrameworkSqlServer(). Once this line is executed, we are basically
instructing the runtime to inject this service wherever it is necessary within our
controllers. This way, we don't have to keep track of it. When the request ends, the
context returns to its own pool, waiting to be used.

Our final code looks as follows:

Go to https://goo.gl/eQHBT6 to access the code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using MVCEF.ViewModels;
using MVCEF.Models;
namespace MVCEF.Controllers
{
...
...
}

13. Add the Views folder.
14. Create Views_ViewStart.cshtml with the following content:

@{
 Layout = "_Layout";
}

15. Create Views\Shared_Layout.cshtml with the following content:

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
</head>
<body>
 <div>
 @RenderBody()
 </div>
</body>
</html>

16. Create Views\Employee\Index.cshtml with the following content:

https://goo.gl/eQHBT6

Go to https://goo.gl/Nf8kep to access the code.

@model MVCEF.ViewModels.EmployeeAddViewModel
@*
//For more information on enabling MVC for empty projects, visit http:
//go.microsoft.com/fwlink/?LinkID=397860
*@
@{
}
<div>
 @using (Html.BeginForm("Index", "Employee", FormMethod.Post))
...
...
</div>

In the preceding Index view, we create a form where we get the employee
information from the user in the topmost div element. In the next div element,
we show the list of employees in a tabular format.

Once we create all the folders and the files, the project structure should look
like the following:

https://goo.gl/Nf8kep

Revise the Index(EmployeeAddViewModel employeeAddViewModel)
method

We'll look at revising the Index(EmployeeAddViewModel employeeAddViewModel) method
so that it will first check whether an employee with the same name exists. If
it exists, it will update that record instead.

Here's the code:

[HttpPost]
public IActionResult Index(EmployeeAddViewModel employeeAddViewModel)
{

 var db = this.employeeDbContext;
 var newRecord = employeeAddViewModel.NewEmployee;
 var existingEmployee =
 db.Employees.FirstOrDefault(k => k.Name == newRecord.Name);
 if (existingEmployee != null)
 {
 existingEmployee.Designation = newRecord.Designation;
 existingEmployee.Salary = newRecord.Salary;
 }
 else
 {
 db.Employees.Add(existingEmployee);
 }
 db.SaveChanges();
 //Redirect to get Index GET method return RedirectToAction("Index");
}

The version might be different in your case.

Database Migration
We have created the business entity—the Employee class. Now, we can proceed
with the migration. Migration is a two-step process: in the first step, we
create the migration files. We have seen how to create migrations from the
Package Manager Console. There is also one other way to create migrations
from command-line tools. To do it, first we need to edit the MVCEF.csproj
project file and add tools to the end of the file. So your project file's ending
should look like this:

...
 <ItemGroup>
 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools"
 Version="2.0.0-preview2-final" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="2.0.0-preview2-final" />
 </ItemGroup>
</Project>

Next, we will execute the command-line tools. This can be done by executing
the following command from the Command Prompt from the context of the
project:

dotnet ef migrations add InitialMigration

InitialMigration is just a name. You can give it any name you like.

Finally, this command will create the migration files in your project, as
shown in the following screenshot:

You will also see a model snapshot is created. This allows EF to get a new
diff from your existing model so that as your model evolves, it can generate
migrations for you.

The snapshot file has to be kept in sync with the migrations that create it, so
you can't remove a migration just by deleting the file named _.cs. If you
delete that file, the remaining migrations will be out of sync with the database
snapshot file. To delete the last migration that you added, use the dotnet ef
migrations remove command.

Then execute the following command to create the database:

This command will read the migration files created in the previous step and
create the database along with the associated tables:

The following screenshot shows you the database created:

Run the application. You will get the following screen, where the user can
enter the employee information in the form. As we are using the strongly
typed model in our view, it takes the default values for all the properties. Name
and Designation are properties of the string type and the default values are
empty string for these fields, Salary is of the decimal type and the default value
for decimal is 0, hence 0 is shown in the form when it is loaded for the Salary
field.

As there are no records, we are showing 0 records in the List of employees table:

When you enter the information in the form and submit it, the information
gets saved in the database and all the database records in the Employees table
will be presented as follows:

Adding an Age Property to the Employee Class and a New Migration

The Employee class will resemble this:

Go to https://goo.gl/2i6iRj to access the code.

public class Employee
{
 public int EmployeeId { get; set; }
 public string Name { get; set; }
 public decimal Salary { get; set; }
 public string Designation { get; set; }
 public int Age { get; set; }
}

Then from the Package Manager Console, we run the Add-Migration EmployeeAge
command.

https://goo.gl/2i6iRj

Summary
In this chapter, we learned what a model is and how it fits in the ASP.NET
MVC application. Then, we created a simple model, built model data in a
controller, passed the model to the view, and showed the data using the
view. We have learned about the models specific to a view and have
discussed the flow of the data with respect to models. We learned about
Entity Framework, an ORM framework from Microsoft, and how it
simplifies database access from your .NET application. We have created a
simple console application where we have inserted, updated, and deleted
records. Finally, we have built an ASP.NET Core application that uses
model, ViewModel, and Entity Framework.

Validation
We can never rely on the data entered by users. Sometimes they might be
ignorant about the application and thus they may be entering incorrect data
unknowingly. At other times, some malign users may want to corrupt the
application by entering inappropriate data into it. In either case, we need to
validate the input data before storing the data for further processing.

By the end of this chapter, you will be able to:

Explain the different types of validation
Perform server-side validation using an example
Perform client-side validation using an example
Perform unobtrusive JavaScript validation using jQuery unobtrusive
libraries

Introduction to Validation
In an ideal case, users will enter valid data in a proper format in your
application. But, as you might realize, the real world is not so ideal. Users
will enter incorrect data in your application. As a developer, it is your
responsibility to validate the user input in your application. If the entered
input is not valid, you need to inform the user, explaining what has gone
wrong, so that the user can correct the input data and submit the form again.

Validation can be done on the client side, on the server side, or at both ends.
If the validation is done before sending the data to the server, it is called
client-side validation. For example, if the user does not enter any data in a
mandatory field, we can validate (by finding the data that is not entered) the
form, at the client side itself.

There is no need to send the form data to the server. JavaScript is the most
commonly-used language for client-side validation:

If the validation is done at the server side (sending the form data to the
server), it is called server-side validation. For instance, you might want to
validate data entered by the user against the data in the database. In this case,
it is preferable to do server-side validation as we cannot have all the data in
the database at the client side:

Server side validation is essential even if we don't use a database as you
cannot trust the user. A malicious user can alter your data, HTML, or
JavaScript in the browser and submit data that is actually incorrect. Server-
side validation is your only real defense.

Never trust client-side validation. For critical data, always do the validation on the
server.

Client-Side and Server-Side
Validation
In the real world, it's not a case of either server-side or client-side validation.
Server-side validation is good for our own security. Client-side validation is
convenient for the user. It also improves our performance. As the validation
runs immediately within the user's browser, it doesn't have any impact on
our server. We can have both types of validation at the same time. In fact, it
is recommended to validate the data at both ends to avoid unnecessary
processing:

The preceding figure shows that the validation is being performed at both the
client side and the server side. If the data is not entered into the required
field, we can catch that issue at the client side itself. There is no need to send
the data to the server to finally find out that there is no data entered. Once all
the required data is entered, the data is sent back to the server to validate the
entered data based on some business logic. If the validation fails, the form
data is sent again to the browser with an error message so that the user can
send the data again.

We have covered enough theory about the need for validation and the types
of validations typically used in the application. Let's get our hands dirty by

adding validation to the application that we built in the previous chapter.

The following screenshot is the form that we built in the previous chapter.
There is nothing fancy in this form—just three fields.

When a user enters the data in the form, the data is stored in the database and
all the employee information is fetched back and shown in a tabular format:

In the existing application that we built, we do not show any message to the
user, even when the user does not enter any information in any of the fields
and submits it. Instead, we silently store the default values for the fields
(empty values for string types and 0.00 for decimal types), as shown in the
following screenshot:

But this should not be the case. We should inform the user that the data
entered is not valid and ask the user to correct the input data.

Server-Side Validation
Let's continue with the application that we built in the previous chapter. To
perform a server-side validation, we need to do the following:

1. Add Data Annotation attributes to the ViewModels model class. The input
data is validated against this metadata and the model state is updated
automatically.

2. Update the view method to display the validation message for each of
the fields. The span tag helper with the asp-validation-for attribute will
be used to display the validation error message.

3. Update the controller action method to verify the model state. If the
model state is valid, we insert the data into the database. Otherwise,
the ViewModel is updated and the view method is rendered again with
the validation error message so that the user can update with valid
input data and submit the form again.

Updating ViewModels with the Data
Annotation Attribute
The Data Annotation attribute defines the validation rules for the properties of
the Model/ViewModel. If the input data does not match the attribute definition in the
model, the validation will fail, which in turn makes the associated model state
invalid. The reason for adding annotations to ViewModels is that we expose
ViewModels to the outside world, not the models. Also, we don't want to pollute
our business classes with ASP.NET-specific attributes.

There are several Data Annotation attributes available to validate the data. The
following are the most commonly-used Data Annotation attributes:

Required: This attribute indicates that the property is required.
Range: This attribute defines the minimum and maximum constraints.
MinLength: This defines the minimum length a property must have in
order for the validation to succeed.
MaxLength: As the name implies, this attribute defines the maximum
length of the property. If the length of the property value exceeds the
maximum length, the validation will fail.
RegularExpression: We can use a regular expression for data validation if
we use this attribute.

As Data Annotation attributes are available in the
System.ComponentModel.DataAnnotations namespace, we need to include this namespace.
The following is the updated ViewModel code from Chapter 4, Models:

Go to https://goo.gl/EgT2vC to access the code.

using MVCEF.Models;
using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Threading.Tasks;
namespace MVCEF.ViewModels
{
 public class EmployeeAddViewModel
 {
 public List<Employee> EmployeesList { get; set; }
 [Required(ErrorMessage = "Employee Name is required")]

https://goo.gl/EgT2vC

 public string Name { get; set; }
 [Required(ErrorMessage = "Employee Designation is required")]
 [MinLength(5, ErrorMessage = "Minimum length of designation should be 5 characters")]
 public string Designation { get; set; }
 [Required]
 [Range(1000, 9999.99)]
 public decimal Salary { get; set; }
 }
}

We have added Data Annotation attributes for all the three properties: Name,
Designation, and Salary.

The ErrorMessage attribute displays a message that will be displayed when the
validation fails. If there is a failure of validation and if there is no ErrorMessage
mentioned, the default error message will be displayed.

The drawbacks of using attributes is that it can only handle literals that are
available at compile time. If we need more dynamic validation, we can derive
from ValidationAttribute and add our own logic. Also, it is possible to use resource
files to localize the items.

Updating the ViewModel to Display the
Validation Error Message
For each of the fields, we have added a span tag where the error message is displayed in a
red color when the validation fails. When the validation succeeds, there will be no error
message displayed. The attribute value of asp-validation-for represents the field name for
which the validation error message has to be displayed. For example, we have used the span
tag with the asp-validation-for attribute and with the Name value, which tells ASP.NET MVC to
display the validation error message for the Name field.

Views/Employee/Index.cshtml looks as follows:

Go to https://goo.gl/k9JMRf to access the code.

@model MVCEF.ViewModels.EmployeeAddViewModel
@*
 //For more information on enabling MVC for empty projects, visit http://go.microsoft.com/fwlink/?LinkID=397860
*@

@{

}

...

 <td>

 </td>

...

Make sure you have Views_ViewImports.cshtml to enable tag helpers, as follows: @addTagHelper *,
Microsoft.AspNetCore.Mvc.TagHelpers

https://goo.gl/k9JMRf
http://go.microsoft.com/fwlink/?LinkID=397860
http://go.microsoft.com/fwlink/?LinkID=397860

Updating the Controller Action
Method to Verify the Model State
The model state is automatically updated based on the Data Annotation
attribute specified on our ViewModel and the input data. We are verifying
whether the model state is valid in the following Index method, which is a POST
action method. If the model state is valid (when the validation succeeds), we
save the entered data to the database. If the validation fails, then the
ModelState is set to invalid automatically. Then, we would populate ViewModel
with the entered data and render the View method again so that the user can
correct the input data and re-submit the data:

Go to https://goo.gl/iQHZYS to access the code.

[HttpPost]
public IActionResult Index(EmployeeAddViewModel employeeAddViewModel)
{
 if (ModelState.IsValid)
 {
...
...
 }
 employeeAddViewModel.EmployeesList =
 employeeDbContext.Employees.ToList();
 return View(employeeAddViewModel);
}

When you run the application after making the aforementioned changes and
submit the form without entering the values, error messages will be
displayed beside the fields, as shown in the following screenshot. Please
note that, even in the case of a validation error, we display the employees'
data in the following table, which is achieved by using the code block in the
previous code snippet:

https://goo.gl/iQHZYS

There are a few things to be noted in the previous validation and its error
message:

If the validation fails, error messages are displayed as expected.
If there is more than one validation for the same field, it will display
one error message at a time. For example, we have a couple of
validations for the Designation field: the Required and MinLength attributes. If
there is no data entered for the field, only the required field error
message will be displayed. Only when the required field error is
resolved (by entering some characters in the field), the second
validation error message will be displayed.
If no error message is available and if the validation fails, the default
error message is displayed. We have not given an error message for the
Salary field. So, when the validation fails for that field, ASP.NET MVC
displays the default error message based on the field name and the type
of validation failure.

It's not possible to circumvent the validation by editing the HTML code from the
browser. The validation happens on the server side. It is safe and there is no way to
work around it.

The following figure depicts the high-level sequence of events in server-side
validation:

Here's the description of the preceding figure:

1. The user enters the invalid data.
2. Based on the Data Annotations attribute in the ViewModel, the model

state is updated automatically. This happens during the model binding
process where the data in the view method is mapped to the data in the
model or ViewModel.

3. In the controller's action method, we are verifying the model state.
4. If the model state is valid, we are saving the entered data to the

database.
5. If the model state is not valid, we are rending the ViewModel again

with the validation error message so that the user can correct the input
data and submit the form again with the valid input data.

Activity: Adding a New Validation Rule for
Designation
Scenario

Your company wants you to add a new validation rule for designation so that it consists of at
least two words. (Hint: use regex.)

Aim

Add a new validation rule for the designation property.

Steps for completion

Revise the designation property in EmployeeAddViewModel.cs, as follows:

Go to https://goo.gl/bK5Ece to access the code.

[Required(ErrorMessage = "Employee Designation is required")]
[MinLength(5, ErrorMessage = "Minimum length of designation should be 5 characters")]
[RegularExpression(@"^[a-z]+(?:\s[a-z]+)+$", ErrorMessage = "Designation should be at least two
words")]
public string Designation { get; set; }

https://goo.gl/bK5Ece

Client-Side Validation
There are scenarios where we don't need to go to the server to validate the
input data. In the preceding example of server-side validation, we do not
need to go to the server to verify whether the user has entered the data for
the Name field. We can validate at the client side itself. This prevents round-
trips to the server and reduces the server load.

We are going to use JavaScript to validate the data from the client side.
JavaScript is a high-level, interpreted language that is primarily used in
client-side programming.

At present, JavaScript is also being used at the server side as part of Node.js.

Performing Client-Side Validation
Follow these steps to perform client-side validation:

1. We are going to make a couple of changes in our ViewModel (the Index.cshtml file)
to validate the form at the client side:

1. Changes in the form: add the id attribute to all the span tags so that we can
access this HTML element to display the HTML error message. On
submission of the form, call a JavaScript function to validate the input data.

2. Add the script HTML element and create a JavaScript function to validate
the input data.

2. In the following code, we are calling the validateForm JavaScript function on
submission of the form. If the validateForm function returns true, the data will be
sent to the server. Otherwise, the data will not be sent. We have added the id
attribute for all the span tags so that we can identify the span tags and display the
validation error messages over there:

Go to https://goo.gl/vjjtRp to access the code.

<form asp-controller="Employee" asp-action="Index" onsubmit="return validateForm()">
 <table>
 <tr>
 <td><label asp-for="Name"></label></td>
 <td><input asp-for="Name" /></td>
 <td>

 </td>
 </tr>
...
...
 </tr>
 </table>
</form>

The purpose of onsubmit="return validateForm()" function is that returns false due to a validation error,
then it will prevent the form from getting submitted to the server. Do not forget the return keyword,
otherwise it won't work as expected.

3. We have added the JavaScript function to validate all three fields. We get the
values of the three fields and store them in separate variables. Then we verify
whether the value of each of the variables is null or empty. If the value is empty,
we get the span element for the respective field and set the text context with the
validation error message:

Go to https://goo.gl/3uPtH1 to access the code.

<script type="text/javascript">
 function validateForm()
 {

https://goo.gl/vjjtRp
https://goo.gl/vjjtRp
https://goo.gl/3uPtH1

 var isValidForm = true;
 var nameValue = document.getElementById("Name").value;
 var designationValue = document.getElementById("Designation").value;
 var salaryValue = document.getElementById("Salary").value;
...
...
 }
</script>

4. When you run the application, and submit the form without entering the data,
you'll get the error message generated from the client side itself without ever
going to the server:

In real-world applications, we would not be hand coding the validation code on the JavaScript.
Instead, most applications use
unobtrusive validation, where we do not write JavaScript code for validating each of the fields.
Simply adding the respective JavaScript libraries will do.

You might wonder how the fields get validated without ever writing the code. The
magic lies in the data- attributes added to the input HTML elements based on the Data
Annotation attributes. This jQuery unobtrusive library gets a list of fields for which
data- attributes are added and it gets validated.

Run the application and press Ctrl + U to see the source code. The source code will
look something like the following:

Go to https://goo.gl/gTYZKb to access the code.

https://goo.gl/gTYZKb

<div>
 <form action="/" method="post">
 <table>
 <tr>
 <td><label for="Name">Name</label></td>
 <td><input type="text" data-val="true" data-val-required="Employee Name is required"
 id="Name" name="Name" value="" /></td>
...
...
 </form>
</div>

Different attributes will be added to different kinds of Data Annotation attributes. The
data attributes were generated from the attributes that we have defined on top of our
ViewModel. For the fields to be validated, the data-val attribute would be set to true. For
the properties, which are marked as required in the ViewModel, the data-val-required
attribute will have the value of the error message of the associated property.

Activity: Adding a New Validation
Rule to a JavaScript Function
Aim

Add a new validation rule to the JavaScript function for designation so that
it must consist of at least two words. (Hint: use regex.)

Steps for completion

We need to revise the JavaScript. Check the following:

Go to https://goo.gl/u8y4Ur to access the code.

//validate the designation field
if (designationValue == null || designationValue == "")
{
 document.getElementById("validationDesignation").textContent =
 "Employee Designation is required - from
 client side";
isValidForm = false;
}
else if (!(/^[a-z]+(?:\s[a-z]+)+$/.test(designationValue)))
{
 document.getElementById(
"validationDesignation").textContent =
 "Employee Designation must be at least two
 words - from client side";
isValidForm = false;
}

https://goo.gl/u8y4Ur

Implementation
The layout file (_Layout.cshtml) defines the layout structure of your web application. As JavaScript
libraries are going to be used in all the pages, this is the right place to add common
functionalities such as unobtrusive validation.

Just add the JavaScript libraries (highlighted in bold in the following code snippet) to the layout
file (_Layout.cshtml) so that they will be available for all the View files:

Go to https://goo.gl/MKJ39B to access the code.

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
</head>
<body>
 <div>
 @RenderBody()
 </div>
 <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-2.2.3.js"></script>
 <script src="https://ajax.aspnetcdn.com/ajax/jquery.validate/ 1.14.0/jquery.validate.min.js"> </script>
 <script src="https://ajax.aspnetcdn.com/ajax/mvc/5.2.3/jquery.validate.unobtrusive.min.js"></script>
</body>
</html>

There is no change to ViewModel except for the removal of the JavaScript function we wrote earlier
for validating the fields. The complete code for the view is as follows:

Go to https://goo.gl/pxazJH to access the code.

@model MVCEF.ViewModels.EmployeeAddViewModel
@*
//For more information on enabling MVC for empty projects, visit http://go.microsoft.com/fwlink/?LinkID=397860
*@
@{
}
...
...
 </table>
</div>

The preceding diagram depicts the unobtrusive client validation process:

1. Data Annotations are added to Model/ViewModels.

https://goo.gl/MKJ39B
https://goo.gl/pxazJH
http://go.microsoft.com/fwlink/?LinkID=397860

2. The view takes Model/ViewModels and generates the HTML.
3. The generated HTML from the ViewModel contains data-* attributes:

For the fields for which the Required attribute is set, the data-val-required attribute is
created with the error message as its value.
For the fields with the MinLength Data Annotation attribute, the data-val-minlength attribute
is set with the error message as its value.
For the range, Data Annotation, the data-val-range attribute is set with the error message
as its value. The data-val-range-max represents the maximum value in the range and the
data-val-range-min attribute represents the minimum value in the range.

4. The jQuery unobtrusive validation library reads these elements with data-* attributes and
does the client-side validation. This means the developer does not have to write the
separation validation code using JavaScript as everything is resolved by the configuration
itself.

The data-val attributes are only generated from our pre-defined data attributes. If we had a complex custom
logic and if we need
them to validate from the client side, then we need to go back to write JavaScript.

Activity: Adding a New Validation
Rule for Designation by Extending
ValidationAttribute
Aim

Add a new validation rule for designation so that it must consist of at least
two words. But this time do not use regex on server side. Instead, extend
ValidationAttribute.

Steps for completion

1. Create the validator attribute, as follows:

Go to https://goo.gl/m63jKP to access the code.

public class TwoWordsValidationAttribute : ValidationAttribute, IClientModelValidator
{
 public void AddValidation(ClientModelValidationContext context)
...
...
}

2. Note that by using client model validator we also interact with the
jQuery unobtrusive validation framework. Then put the following code
in the Layout file at the bottom of the page:

Go to https://goo.gl/Px3d12 to access the code.

...
<script type="text/javascript">
$(function () {
jQuery.validator.addMethod('twowords', function (value, element, params)
{
 var value = $(params[0]).val();
 return /^[a-z]+(?:\s[a-z]+)+$/.test(value);
});
...
...
 </script>

https://goo.gl/m63jKP
https://goo.gl/Px3d12

</body>
</html>

Summary
In this chapter, we learned about the need for validation and the different
kinds of validation available. We have even discussed how client-side and
server-side validation work, along with the pros and cons of each type of
validation. Later, we made code changes to validate the input data at the
server side. Then we used JavaScript to validate the input data in the client
side itself. Finally, we used the jQuery unobtrusive library to do the client-
side validation without ever writing the JavaScript code to validate the input
data at the client side.

In the next chapter, we will discuss the routing principle and how to
customize it. In an earlier chapter, we saw the basics of routing in an
ASP.NET 5 application. Now we are going to explore this topic in depth.

Routing
Routing is one of the most important concepts in the ASP.NET MVC
application as it takes care of incoming requests and maps them to the
appropriate controller's actions.

We briefly discussed routing in Chapter 2, Controllers. In this chapter, we are
going to discuss routing along with several options available for
customizing it in ASP.NET Core.

By the end of this chapter, you will be able to:

Use the MapRoute method to configure routing
Work with different types of routing with examples—convention and
attribute-based
Use HTTP verbs in attribute-based routing

Convention-Based Routing
The routing engine is responsible for mapping the incoming requests to the
appropriate action method of the controller.

We should have route names as it gives the route a logical name so that the
named route can be used for URL generation. This greatly simplifies URL
creation when the ordering of routes could make URL generation
complicated. Routes names must be unique application-wide.

Route names have no impact on URL matching or handling of requests; they
are used only for URL generation. Though URL generation is a different
topic to study, we can say briefly that we use it for generating links from one
page to another in our views.

In the Configure method of the Startup class, we have mapped the following
route:

app.UseMvc(routes =>
{
 routes.MapRoute(
 name: "default",
 template: "{controller=Employee}/{action=Index}/{id?}");
});

Alternatively, you can use the following code:
app.UseMvcWithDefaultRoute();

This is equal to the following:
app.UseMvc(routes =>

{

 routes.MapRoute(

 name: "default",

 template: "{controller=Home}/{action=Index}/{id?}");

});

The MapRoute method has two parameters:

name: This represents the name of the route as we could configure
multiple routes for the same application.
template: This signifies the actual configuration for the route. There are
three parts to this configuration value. As we are supplying default

parameters, if the values are not passed, it will take the default
parameter values.

{controller=Employee}: The first value acts as the name of the
controller. We use the Employee controller as the default controller
when the controller value is not available in the URL.
{action=Index}: The Index action method will be acting as the default
action method. The second parameter from the URL will be taken
as the action method name.
{id?}: By specifying "?" after the id parameter, we are saying that
id is the optional parameter. If the value is passed as the third
parameter, the id value will be taken. Otherwise, it would not be
considered.

Let us see a few examples and observe how our routing engine works. We
are assuming the following routing for the preceding examples:

"{controller=Employee}/{action=Index}/{id?}"

Example 1

This is how the URL appears:

In this URL, we have not passed a value for the controller, action, or id
parameters. Since we have not passed anything, it would take the default
values for the controller and the action. So, the URL is converted into the
following URL by the routing engine:

Example 2

This is how the URL appears:

In this URL, we have passed the value for the controller (the first
parameter), which is Employee, whereas we did not pass anything for the action
method (the second parameter) or id (the third parameter). So, the URL will
be converted into the following URL, taking the default value for the action
method:

Example 3

This is how the URL appears:

The routing engine will take the first parameter, Manager, as the controller
name and the second parameter, List, as the action method name.

Example 4

This is how the URL appears:

We have passed all three parameters in this URL. So, the first parameter
value, Manager, will be considered as the controller method name. The second

parameter value will be considered as the action method name. The third
parameter value will be considered as the id.

When defining the map route, we use the MapRoute method with a couple of
parameters. The first parameter, name, represents the name of the route and
the second parameter, template, represents the URL pattern to be matched
along with the default values. Here's some sample code for your observation:

routes.MapRoute(name: "default",
 template:
 "{controller=Employee}/{action=Index}/{id?}");

There are other overloaded variations of this MapRoute method. The following
is another commonly overloaded MapRoute method, where the incoming URL
pattern and the default values are passed for different parameters. The name
of the route is FirstRoute and this route will be applied for all URLs starting
with Home. The default values for the controller and the action are Home and
Index2, respectively, as shown here:

routes.MapRoute(name: "FirstRoute",
 template: "Home",
 defaults: new { controller = "Home", action = "Index2" });

You can define any number of routing maps for your ASP.NET MVC
application. There is no restriction or limit on the routing maps. Let's add
another routing map to our application. We have added another route map
called FirstRoute to our application:

Go to https://goo.gl/36qj7c to access the code.

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 app.UseMvc(routes =>
 {
 routes.MapRoute(name: "FirstRoute",
 template: "Home", defaults: new
 {
 controller = "Home",
 action = "Index2"
 });
 routes.MapRoute(name: "default",
 template:
 "{controller=Employee}/{action=Index}/{id?}");
 });
}

https://goo.gl/36qj7c

And we have added another controller method by the name of HomeController
with a couple of simple action methods that return different strings:

Go to https://goo.gl/avdJM9 to access the code.

public class HomeController : Controller
{
 // GET: /<controller>/
 public IActionResult Index()
 {
 return Content("Index action method");
 }
 public IActionResult Index2()
 {
 return Content("Index2 action method");
 }
}

When you try to access the application through the URL,
http://localhost:49831/Hello, both routing maps, FirstRoute and the default,
match with the URL pattern.

The routing engine maps the incoming URL based on the following factors:

The matching pattern
The order defined in the routing engine

The first factor is an obvious one. For a routing map to be picked up by the
routing engine, the pattern of the incoming URL should get matched with
the defined template in the routing map.

The second factor is subtle but important. If more than one routing map
matches with the incoming URL, the routing engine will pick the first URL
as defined in the configuration.

For example, if the incoming URL matches with both the FirstRoute and
default maps, the routing engine will pick the FirstRoute map as it was defined
first in the configuration:

https://goo.gl/avdJM9

If the routing engine could not map the incoming URL to any of the
mapping routes, we get an HTTP 404 error, meaning that no resource could be
found. You can see the status (200 means OK, 404 means No resource
found) by looking at the Network tab in the developer tools, as shown in the
following screenshot:

Attribute-Based Routing
Until now, we have used convention-based routing. In convention-based
routing, we define the routing templates (which are just parameterized
strings) in a centralized place that is applicable to all the available
controllers. The problem with convention–based routing is that, if we want
to define different URL patterns for different controllers, we need to define
a custom URL pattern that is common to all the controllers.
Also, convention-based routing sets our general routing template. It is more
flexible; changing it programmatically at runtime is possible. This makes
things difficult.

There is another option for configuring the attribute-based engine routing.
In attribute-based routing, instead of configuring all the routing in a
centralized location, the configuration will happen at the controller level.
We can customize and override our conventions. Attribute-based routing is
more static and determined at runtime.

Working on an Example of
Attribute-Based Routing
Follow these steps to explore attribute-based routing:

1. First, let us remove the convention-based routing that we created
earlier in the Configure method in the startup.cs class file:

public void Configure(IApplicationBuilder app,
IHostingEnvironment env)
{
 app.UseMvc();
 //app.UseMvc(routes =>
 //{
 // routes.MapRoute(name: "FirstRoute",
 // template: "Home", defaults: new
 // {
 // controller = "Home",
 // action = "Index2"
 // });
 // routes.MapRoute(name: "default",
 // template:
 "{controller=Employee}/{action=Index}/{id?}");
 //});
 }

2. Then, we can configure the routing at the controller itself. In the
following code, we have added the routing configuration for the home
controller that we created earlier:

public class HomeController : Controller
{
 // GET: /<controller>/
 [Route("Home")]
 public IActionResult Index()
 {
 return Content("Index action method");
 }
 [Route("Home/Index3")]
 public IActionResult Index2()
 {
 return Content("Index2 action method");
 }
}

We have used the Route attribute in the action methods of the controller. The
value passed in the Route attribute will be acting as the URL pattern. For
example, when we access the http://localhost:49831/Home/ URL, the Index
method of HomeController will be called. When we access the
http://localhost:49831/Home/Index3 URL, the Index2 method of HomeController will be
called.

The URL pattern and action method name do not need to match.

In the preceding example, we are calling the Index2 action method, but the
URL pattern uses Index3, http://localhost:49831/Home/Index3.

When you use attribute-based routing and convention-based routing
together, attribute-based routing will take precedence.

Route Attribute at the Controller
Level
You will notice that, with the URL pattern for the action methods, Index and
Index2, we repeat the controller name, Home, in both URL patterns, Home and
Home/Index3. Instead of repeating the controller method name (or any common
part in the URL) at the action method level, we can define it at the controller
level.

In the following code, the common part of the URL (Home) is defined at
the controller level and the unique part is defined at the action method level.
When the URL pattern is getting mapped to the action methods of the
controller, both route parts (at the controller level and at the action method
level) are merged and matched. So, there will be no difference between the
routes defined earlier and those that follow.

If you want any parameters in attribute-based routing, you can pass them
within curly brackets. In the following example, we did this for the SayHello
action method.

For example, the http://localhost:49831/Home/Index3 URL pattern will still get
mapped to the Index2 method of the Homecontroller:

[Route("Home")]
public class HomeController : Controller
{
 // GET: /<controller>/
 [Route("")]
 public IActionResult Index()
 {
 return Content("Index action method");
 }
 [Route("Index3")]
 public IActionResult Index2()
 {
 return Content("Index2 action method");
 }
 [Route("SayHello/{id}")]
 public IActionResult SayHello(int id)"
 {

 return Content("Say Hello action method" + id);
 }
}

Token Replacement in Route
Templates
If you want your route to be based on the class and action names and still
want to use attributes, there is a middle way of using attributes for
conventional routing: token replacement.

[action], [area], and [controller] will be replaced with the values of the action
name, area name, and controller name from the action where the route is
defined. Let's see an example. Here is the original code:

[Route("[controller]/[action]")]
public class ProductsController : Controller
 {
 [HttpGet] // Matches '/Products/List'
 public IActionResult List()
 {
 // ...
 }
 [HttpGet("{id}")] // Matches '/Products/Edit/{id}'
 public IActionResult Edit(int id)
 {
 // ...
 }
}

The following code shows the change:

public class ProductsController : Controller
{
 [HttpGet("[controller]/[action]")] // Matches '/Products/List'
 public IActionResult List()
 {
 // ...
 }
 [HttpGet("[controller]/[action]/{id}")] // Matches '/Products/Edit/{id}'
 public IActionResult Edit(int id)
 {
 // ...
 }
}

Attribute routes can also be combined with inheritance. This is particularly
powerful combined with token replacement:

[Route("api/[controller]")]
public abstract class MyBaseController : Controller { ... }
public class ProductsController : MyBaseController
{
 [HttpGet] // Matches '/api/Products'
 public IActionResult List() { ... }
 [HttpPost("{id}")] // Matches '/api/Products/{id}'
 public IActionResult Edit(int id) { ... }
}

Activity: Combining Route
Templates that Begin with /
Scenario

Route templates applied to an action that begin with a / do not get combined
with route templates applied to the controller. This example matches a set of
URL paths similar to the default route. Based on this information, revise
SayHello so that we can access it by writing http://localhost:
<yourport>/Employee/SayHello/1.

Aim

Solve the issue of combining route templates that begin with / with route
templates applied to the controller.

Steps for completion

Use the following code:

Go to https://goo.gl/q97bvZ to access the code.

[Route("/Employee/SayHello/{id}")]
public IActionResult SayHello(int id)
{
 return Content("Say Hello action method" + id);
}

The following code shows the use of multiple routes:

[Route("Store")]
[Route("[controller]")]
public class ProductsController : Controller
{
 [HttpPost("Buy")] // Matches 'Products/Buy' and 'Store/Buy'
 [HttpPost("Checkout")] // Matches 'Products/Checkout' and 'Store/Checkout'
 public IActionResult Buy()
}

https://goo.gl/q97bvZ

Passing Routing Values in HTTP
Action Verbs in the Controller
Instead of passing the routing values as Route attributes, we can pass the
routing values in HTTP action verbs, such as HTTPGet and HTTPPost.

In the following code, we have used the HTTPGet attribute to pass the route
values. For the Index method, we did not pass any value and hence no route
value will get appended to the route value defined at the controller method
level. For the Index2 method, we are passing the Index3 value. Index3 will get
appended to the route value defined at the controller level. Please note that
only URLs with GET methods will be mapped to the action methods. If you
access the same URL pattern with the POST method, these routes will not get
matched and hence these action methods will not get called:

[Route("Home")]
public class HomeController : Controller
{
 // GET: /<controller>/
 [HttpGet()]
 public IActionResult Index()
 {
 return Content("Index action method");
 }
 [HttpGet("Index3")]
 public IActionResult Index2()
 {
 return Content("Index2 action method");
 }
}

Activity: Defining Two Actions with
the Same Name with Different
Verbs
Scenario

You're tasked to define two actions with the same name with different verbs
such as POST and GET. How will you do it so that you're more RESTful with
the controllers?

Aim

Define two actions having the same names with different verbs, such as POST
and GET.

Steps for completion

Use the following code:

Go to https://goo.gl/nxs7tK to access the code.

[Route("Home")]
public class HomeController : Controller
{
 // GET: /<controller>/
 [HttpGet()]
 public IActionResult Index()
 {
 return Content("Index action method");
 }
 [HttpGet("Index3")]
 public IActionResult Index2()
 {
 return Content("Index2 action method");
 }
 [HttpPost("Index3")]
 public IActionResult Index2_Post()
 {
 return Content("Index2 post method");
 }
}

https://goo.gl/nxs7tK

See the Fiddler output as follows:

Route Constraints
Route Constraints enable you to constrain the type of values that you pass
to the controller action. It is all about action selection for routing. So, we
can say one action should trigger for integer input whereas another should
trigger for non-integers. For example, if you want to restrict the value to be
passed to the int type, you can do so. The following is one such instance:

[HttpGet("details2/{id:int}")]
 public IActionResult Details2(int id = 123)
 {
 return View();
 }

ASP.NET Core even supports default parameter values so that you can pass
the default parameters:

[HttpGet("details2/{id:int}")]
 public IActionResult Details2(int id = 123)
 {
 return View();
 }

There are many constraints available, such as int and bool.

Activity: Creating an Attribute that
Implements
IActionConstraintFactory
Scenario

By using IActionConstraint and IActionConstraintFactory interfaces we can add
custom constraints. Create an attribute that implements
IActionConstraintFactory and returns an IActionConstraint. Use it and modify the
below code so that for the Accept: text/html header, Index2_HTML is called but for
Accept: application/json, Index2_Json is called. You may use Fiddler to send the
requests.

[Route("Home")]
public class HomeController : Controller
{
 // GET: /<controller>/
 [HttpGet()]
 public IActionResult Index()
 {
 return Content("Index action method");
 }
 [HttpGet("Index2")]
 public IActionResult Index2_HTML()
 {
 return Content("HTML response returns");
 }
 [HttpGet("Index2")]
 public IActionResult Index2_JSON()
 {
 return Content("Json response returns");
 }
}

Aim

To create an attribute that implements IActionConstraintFactory and returns an
IActionConstraint

Steps for completion

1. We first create AcceptHeaderActionConstraint as follows:

Go to https://goo.gl/nUvECW to access the code.

public class AcceptHeaderActionConstraint : IActionConstraint
{
 readonly string headerValue;
 public AcceptHeaderActionConstraint(string headerValue)
 {
 this.headerValue = headerValue;
 }
 public int Order => 0;
 public bool Accept(ActionConstraintContext context)
 {
 var headerVal = context.RouteContext.
 HttpContext.Request.Headers["Accept"];
 return headerVal.Contains(this.headerValue);
 }
}

2. Then, we create our actions, as follows:

Go to https://goo.gl/HdMzjq to access the code.

public class AcceptHeaderAttribute : Attribute,
IActionConstraintFactory
{
 readonly string value;
 public AcceptHeaderAttribute(string value)
 => this.value = value;
 public bool IsReusable => true;
 public IActionConstraint CreateInstance(IServiceProvider services)
 => new AcceptHeaderActionConstraint(this.value);
}

3. And decorate our actions, as follows:

Go to https://goo.gl/dK9ZJ1 to access the code.

[Route("Home")]
public class HomeController : Controller
{
 // GET: /<controller>/
 [HttpGet()]
 public IActionResult Index()
 {
 return Content("Index action method");
 }
 [AcceptHeader("text/html")]
 [HttpGet("Index2")]
 public IActionResult Index2_HTML()
 {
 return Content("HTML response returns");

https://goo.gl/nUvECW
https://goo.gl/HdMzjq
https://goo.gl/dK9ZJ1

 }
 [AcceptHeader("application/json")]
 [HttpGet("Index2")]
 public IActionResult Index2_JSON()
 {
 return Content("Json response returns");
 }
}

The output for a sample request will be as follows:

Note that for the sake of simplicity we are just returning arbitrary strings. In
a real application we would have returned real objects.

Summary
In this chapter, we have learned about routing and how it works. We learned
about the different kinds of routing available. We discussed convention-
based routing and attribute-based routing with different examples. We also
discussed route constraints and the default parameter values that could be
passed.

In the next chapter, we'll start building our Rest Buy application.

Rest Buy
Routing is one of the most important concepts in the ASP.NET MVC
application, as it takes care of incoming requests and maps them to the
appropriate controller's actions.

In this chapter, we will try to apply what we have learned and start building
a simplified real-world application. We will begin the development of a
simple shopping cart application called Rest Buy. We call it Rest Buy
because we will also try to employ RESTful tactics during the development.

In the Rest Buy project, we will make use of ASP.NET Core MVC along
with Entity Framework and SQL Server, since this is the topic of the book,
and try to employ a RESTful strategy. You will have a better idea about
what we mean by RESTful through the development.

Note that these days, Single-Page Applications (SPA) are quite popular.
There are lots of job opportunities for developers who work on frameworks
such as Angular and React (used for Single-Page Applications). And these
applications go to such extents as to turn an entire page into one single
HTML document. This has some significant advantages as client-side
developers can work almost completely isolated from the server side, and
they develop the UI as if they are developing any mobile application. Also,
they can isolate themselves from the tech stack that is used in the server. In
addition to that, Visual Studio 2017 now also has Single-Page Application
templates that you can use. However, in this course we will not build a
Single-Page Application as we think this approach has also some potential
drawbacks—or at least, can be slightly uncomfortable at times.

In the SPA approach, we usually load the HTML page without any data at
first. Later, the data is loaded with a secondary AJAX request. This may
require, at least for the very first time, your application to have some sort of
initial loading screen. Such loading screens are tolerable in mobile apps.

However, when it is about web applications your visitors will not desire to
wait even for a few seconds.

Secondly, although search engines these days can render JavaScript, search
engine optimization can still be tricky with the SPA approach.

Thirdly, there can be some discrepancy in the routing mechanism because
with SPAs you start to manage URL routing from JavaScript as well as
server side. This duality can be cumbersome to deal with at times.

Finally, from a RESTful point of view we would like to think that once we
hit a URL like /Products, and when we make use of the text/html accept
header, our intent is get products' representations as HTML, but not just
dummy SPA HTML, and then load the products there. We know that World
Wide Web is a proven technology and the ideas behind it like Rest and
Hypermedia are something we can trust.

Having said that, this doesn't mean we can ignore client state. We still need
to make use of AJAX not just to improve the user experience but also
because the browser is responsible for maintaining application state in its
memory. (We could also resort to cookies and local storage but that would
be a bit more difficult.)

To sum up, we decided to go with a hybrid approach. We will briefly use
these SPA frameworks for a fragment of a page whenever they are needed
but also stick to server-side rendering and routing in general. For some
cases, some parts can be rendered initially from the server side and then
from the client side. This is an opinionated approach and we suggest you
stick to whatever approach works for you in your career.

By the end of this chapter, you will be able to:

Design Rest Buy
Create the entities for the application
Create EF context and migrations

Designing Rest Buy
We will start developing a simple shopping cart application in an iterative
fashion. The features, screens, and user stories will also be explained along
the way. However, for the sake of simplicity, we will give you a basic
skeleton or a framework to start with and you need to fill the remaining
transaction. The purpose of this application is to glimpse how a real life
application is done. We will assume the data, such as products, are entered
into the database by some other means. In our case, we will either hand edit
or use database migrations.

In this book, we'll cover the Registration feature in Chapter 8, Adding
Features, Testing, and Deployment. As mentioned, we're following iterative
building of the application. Hence, as and when the next features are
developed and you wish to refer to them, you can find them here: https://git
hub.com/OnurGumus/Packt_ASPNET_Core_RestBuy

https://github.com/OnurGumus/Packt_ASPNET_Core_RestBuy

Features and Stories
Let's define our user stories and features:

Feature Story

Functionality
1

Functionality
2

Functionality
3

Functionality
4

List
products

As a
registered or
unregistered
customer,
when you
visit the home
page it should
show a list of
products.

As a
registered or
unregistered
customer in
the product
list page,
when you
click on a
product it
should show
the product
detail page.

Search
and filter
products

As a
registered or
unregistered
customer, you
should be able
to filter the
products as
per categories.
A product can
be associated
with multiple
categories. So,
when you
select one or
more
categories and
click on Filter,

As a
registered or
unregistered
customer, you
should be
able to filter
the products
by a price
range. Here,
there will be a
minimum and
maximum
price and
when you
select a range
this should be
applied along

As a
registered or
unregistered
customer,
when you
write some
text in the
search
textbox, it
should filter
the product's
description
and name.

a filter
should be
applied until
the page
changes.

with a
category
filter.

Show
product
details

As a
registered or
unregistered
customer, you
should be able
to bookmark
each product,
which should
be
displayed with
a unique
URL.

As a
registered or
unregistered
customer,
when
you visit a
product page,
it should
show you the
product's
name, photo,
description
and price.

Shopping
Cart

As a
registered or
unregistered
customer, you
should be able
to add or
remove
products to
the shopping
cart.

As a
registered or
unregistered
customer, you
should be
able to utilize
the checkout
panel to view
your current
added items.

As a
registered or
unregistered
customer, you
should be
able to go to
checkout page
by clicking
on the
checkout
panel.

As a
registered
customer, you
should be
able to check
out
and confirm
your cart to
convert it to
an order.

Manage
Orders

As a
registered
customer, you
should be able
to view your
order details.

Login As a
registered
customer, you

should be able
to log into the
application.

Logout

As a
registered
customer, you
should be able
to log out of
the
application.

From the agile point of view, features and stories are not hierarchical. Features are more like
tags to the user stories. Still, for simplicity and clarification, it is shown as hierarchical.

Layout and Pages
After defining our features, a good way to design our application is UX. By
UX we refer to the user experience. UX doesn't mean we should program or
design our UI first. UX helps us to identify the possible flows of our
application from a user point of view and they have to be supported and
complemented by the features.

Main Page
The main page can look similar to what is shown in the following
screenshot:

Product Detail
The Product Detail page can look similar to what is shown in the following
screenshot:

Checkout
The Checkout page can look similar to what is shown in the following
screenshot:

Checkout Success
The Checkout Successful page can look similar to what is shown in the
following screenshot:

Previous Orders
The Previous Orders page can look similar to what is shown in the following
screenshot:

As you can see in some of the screenshots, we omitted the filter. It is an
arbitrary decision; we thought that for the pages that we don't display
products on, there is no point in keeping the filters, but still we have kept our
search box at the top.

Defining our Domain and Model
The next thing is to define our model. Here we will try to apply domain-
driven design. In domain-driven design, we model our classes based on the
business domain and terminology. Obviously, if you have read the user
stories, we already have a lot of clues about our domain, classes, and their
properties.

For the time being, we can model our domain with 5 classes: Product, Order,
User, OrderItem, and StockAmount. In this case, product and user are
separate aggregates. An aggregate is a domain-driven development concept.
Aggregates are used to designate independent parts of our domain classes.
Typically, each aggregate consists of one or more classes and each represents
a set of independent invariants. We have the following invariants:

An order has at least 1 order item.
An order has a create date and a user ID.
An order item denotes a quantity and price and product ID.
For an order item, quantity and price cannot be zero.
An unconfirmed order denotes the current shopping cart.
A customer can have maximum 1 unconfirmed order. (Drops to zero
when checkout is completed)
For an order item, the product ID must be valid. For a product, stock
amount and price must be greater than or equal to zero.
For StockAmount, the quantity must be equal to the quantity in an order
item.

In the preceding diagram, we have defined three aggregates as Order,
Product, and User. The dash lines above show indirect reference via the ID
field whereas the solid line between Order and OrderItem refers to a direct
reference. The very reason we have chosen this approach is that different
modules of the application, such as the administration module, may want to
deal with an aggregate independently. Changing a user's postal address
should not affect the user's existing orders and order items. They are very
much independent from each other. We can also move these entities to
different micro services. After all, our business invariants and constraints
should only hold per an aggregate. Again, there is no absolute right way to
do this, it depends on the project and how much you invest in future. As for
the shopping cart itself, we will use the Order entity if the order is
unconfirmed.

Creating a RestBuy Project
Having equipped ourselves with our initial design ideas, we can start
implementing our project in practice. Follow these steps:

1. Create a new solution and Web Application as shown in the following
screenshot. Make sure we name the project RestBuy.Web, and the solution
name as RestBuy:

2. Select the MVC option and click on OK:

You'll see this:

3. Add a new project as a .NET Standard Class Library called RestBuy:

4. Add another Project as a .NET Standard Class Library called
RestBuy.InfraStructure:

5. Right click on the dependencies section in the solution explorer for the
RestBuy.Web project and add dependencies to the other projects:

6. Similar to RestBuy.InfraStructure, add a reference to RestBuy.

The RestBuy project itself references no other project.

Now, your project structure will look as follows:

In case our business logic is not aware of the database layer, we will put our database
interfaces to the business layer and do their implementations in the infrastructure and
use a dependency injection (not inversion) framework to inject those interfaces to
retrieve data from the database. This is the dependency inversion principle.

Activity: Preparing Features and
Stories for a Website
Scenario

Your client happens to be a fashion designer. He wants you to build a
website for him. You need to first prepare features and stories for his
website.

Aim

Prepare features and stories for a website.

Steps for completion

1. List down all the activities that a fashion designer does.
2. List down the web pages that he'll need for his business.
3. Write the features along with stories accompanying them.

Activity: Preparing Wireframe
Diagrams for a Website
Scenario

Your client, the fashion designer, wants to see the wireframe diagrams of the
web pages. You can prepare a wireframe diagram for the home page.

Aim

Prepare a wireframe diagram for a web page.

Steps for completion

1. Go to https://www.draw.io/.
2. In the Save diagrams to: dialog box, select Device.
3. In the Device dialog box, click on Create New Diagram.
4. In the next window, choose Basic (1), give a name to the file, and click

on Create.
5. You'll be presented with the workspace screen, as shown in the

following screenshot:

https://www.draw.io/
https://www.draw.io/

6. Click on the More Shapes button on the bottom left-hand corner of the
screen (marked by a blue box in the preceding screenshot).

7. In the Shapes dialog box, select Mockups under the Software category.
You can uncheck the rest of the options.

8. Click on Apply. You're ready to go.

Activity: Designing a Domain
Model for a Website
Scenario

You want to design a domain model for the website you're building for your
client, the fashion designer.

Aim

Design a domain model for a website.

Steps for completion

1. List down the classes you'll require to model your domain.
2. Define the aggregates.
3. Use draw.io to design a diagram and mention the aggregates and

classes.
4. Use dashed lines to show indirect reference between the classes.
5. Use solid lines to show direct reference between the classes.

Creating the Entities
Now that we have our dependencies clarified, we can start creating our
entities. You can delete existing Class1.cs files in the libraries.

Follow these steps to create the entities for Rest Buy:

1. Create an Entities folder in the RestBuy project as shown in the following
screenshot:

2. Inside the Entities folder we need to create four classes:
BaseEntity: This is the base class for all our entities
Order: This class will contain the logic behind the ordering of
products.
OrderItem: This class is for containing order details.
Product: This class is for containing details of the products.
StockAmount: This class represents how many products are left in the
store of a type.

3. Have this code inside BaseEntity:

Go to https://goo.gl/E8DaGb to access the code.

using System;
using System.Collections.Generic;
using System.Text;
namespace RestBuy.Entities
public abstract class BaseEntity
{
 protected int id;
 public int Id => this.id;
}
}

4. Have this code inside Order:

Go to https://goo.gl/7JBmVH to access the code.

using System;
using System.Collections.Generic;
using System.Text;
namespace RestBuy.Entities
{
 public class Order : BaseEntity
 {
 int userId;
 DateTime createDate;
 List<OrderItem> orderItems = new List<OrderItem>();
 private Order() { }
...
...
 }
}

5. Have this code inside OrderItem:

Go to https://goo.gl/J11TQu to access the code.

using System;
using System.Collections.Generic;
using System.Text;
namespace RestBuy.Entities
{
 public class OrderItem : BaseEntity
 {
 int productId;
 int quantity;
 decimal price;
 private OrderItem() { }
 public OrderItem(int productId, int quantity, decimal price)
...
...

https://goo.gl/E8DaGb
https://goo.gl/7JBmVH
https://goo.gl/J11TQu

 }
}

6. Have this code inside Product:

Go to https://goo.gl/MPukF3 to access the code.

using System;
using System.Collections.Generic;
using System.Text;
namespace RestBuy.Entities
{
 public class Product : BaseEntity
 {
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string PictureUri { get; set; }
 public string Category { get; set; }
 }
}

7. Have this code inside StockAmount:

Go to https://goo.gl/RmgHzn to access the code.

using System;
using System.Collections.Generic;
using System.Text;
namespace RestBuy.Entities
{
 public class StockAmount : BaseEntity
...
...
}

https://goo.gl/MPukF3
https://goo.gl/RmgHzn

Create EF Context and Migrations
For starters, we need to install Entity Framework and its tools to our
Infrastructure project.

Follow these steps to create the EF context:

1. Just right-click on dependencies and select Manage NuGet Packages.
2. Afterwards write Microsoft.EntityFramework.Core.SqlServer in the search box

and install it.

Your screen should look as follows:

3. Similarly, install the Microsot.EntityFrameworkCore.Tools package, as
follows:

So, your project folder for Infrastructure looks as follows:

4. Next, we create the EF folder in the Infrastructure project and implement
our DbContext with a class called RestBuyContext. Make sure you have a
reference to the RestBuy project from Infrastructure. Use this code:

Go to https://goo.gl/wYLwRA to access the code.

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata.Builders;
using RestBuy.Entities;
using System;
using System.Collections.Generic;
using System.Text;
...
void ConfigureStockAmount(EntityTypeBuilder<StockAmount> builder)
{
...
 builder.Property(ci => ci.Quantity).IsRequired().IsConcurrencyToken();
}
...
In the preceding mapping, the Quantity property of StockAmount is marked as
ConcurrencyToken as we don't want two orders to reduce the stock amount
simultaneously. Suppose that we have two parallel requests racing to buy for the last
item. Only one of them can win. Using ConcurrencyToken causes Entity Framework to
generate a query that confirms that the value has not been changed. Doing so will
cause DbUpdateConcurrencyException; in this case, we have to retry.

Here we use a HiLo algorithm for key generation. If you don't make use of
HiLo, normally EF and SQL server uses auto incremented IDs. While auto
incremented IDs are simpler, whenever you add an entity to the context, this

https://goo.gl/wYLwRA

addition forces the entity to be inserted to the database. That is because we
can only retrieve the ID if the actual insertion happens in the case of auto
incremented IDs. The HiLo algorithm frees us from this restriction by
reserving the IDs beforehand using a database sequence. We also change the
defaults for the sequence so that it starts from 1,000 and increments by 100
for each. By using this approach we can insert our design time data to the
first 1,000 slots available.

Create migrations
Once we have defined our database context, the next step is to generate
migrations. However, since we now have an infrastructure project, we would
prefer our infrastructure project to be the host of our migrations.

To do that, follow these steps:

1. Create RestBuyContextFactory in the EF folder:

Go to https://goo.gl/BnBPLD to access the code.

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Design;
using Microsoft.EntityFrameworkCore.Infrastructure;
using RestBuy.Infrastructure.EF;
using System;
using System.Collections.Generic;
using System.Text;
namespace RestBuy.Infrastructure.EF
{
 class RestBuyContextFactory : IDesignTimeDbContextFactory<RestBuyContext>
 {
 public RestBuyContext CreateDbContext(string[] args)
...
...
 }
}

2. Have a look at the folder structure. Our EF folder looks as follows:

https://goo.gl/BnBPLD

Note that we have our connection string embedded into this factory
class. The reason is, as the name of the interface implies, anything
that implements IDesignTimeDbContextFactory is for design time only.
That is, our migration generation tool will make use of this. On the
other hand, since we make use of the trusted connection, it is
relatively safe to embed it as a string. If it contained any passwords,
design time or not, it is a pretty bad
idea to embed such strings into the binaries.

3. The obvious next step is to add the migrations. Now let's open package
manager, which you can do by typing package into the quick launch
search:

This is what will appear on your screen:

4. Then, make sure you select our Infrastructure project type Add-
MigrationInitialMigration in the package manager console. Running this
command will generate migrations in our Infrastructure project:

5. Next, we create our database by using the Update-Database command:

Then, we can see that our tables are created from SQL Server Object
Explorer:

Activity: Adding a Supplier Entity
that Denotes the Supplier of a
Product
Scenario

You want to add a supplier entity that denotes the supplier of a product.

Aim

Add a supplier entity for a product.

Steps for completion

1. We can add Supplier class as follows:

Go to https://goo.gl/pTCc56 to access the code.

namespace RestBuy.Entities
{
 class Supplier : BaseEntity
 {
 public string Name { get; set; }
 }
}

Optionally we can add a Supplier property to Product or a SupplierId
depending on if we want them to be in the same aggregate or not.
This is a design choice.

2. And for the migrations we use the following code:

void ConfigureSupplier(EntityTypeBuilder<Supplier>builder)
{
 builder.ToTable("Suppliers");
 builder.HasKey(ci => ci.Id);
 builder.Property(ci => ci.Name)
 .IsRequired()
 .HasMaxLength(50);

https://goo.gl/pTCc56
https://goo.gl/pTCc56

 builder.HasIndex(c => c.Name).IsUnique();
}

Summary
In this chapter, we designed our application. We went on to create the
entities for our application. Finally, we looked into creating the EF context
and migrations.

Adding Features, Testing, and
Deployment
In this chapter, we'll look at adding the registration feature to our
application. This will be followed by creating a unit test. The objective here
is to help you go about with adding a feature and testing it. Finally, we'll
upgrade our project to Bootstrap 4.

We will continue implementing our Rest Buy service. This section is
relatively critical because we will implement mostly logic to implement our
application.

By the end of this chapter, you will be able to:

Add the registration feature
Create a unit test
Upgrade our project to Bootstrap 4
Deploy Rest Buy to Azure

Adding the Registration Feature
Since we will start adding logic to our application, this is a good time to add
our application layer to the project. As we discussed in the previous chapter,
we are designing our application to be layered and abiding by domain-driven
design standards.

In domain-driven design, a common approach in layering is Onion
Architecture. In onion architecture, each layer can make use of the inside
layer but the outside layer has to adapt itself to the inside. And we try to
design our application from inside out. That's why we have designed our
application starting with entities:

In the preceding figure, we have a domain model at the core, and on top of it
we have application services. The purple rectangles are interfaces, the black
arrows denote compile-time dependencies, and the magenta circles are
external dependencies on infrastructure.

Application Services are for handling commands and requests.

There is an on-going discussion on whether entities in the domain model should be
accessible outside. Some people prefer using DTOs to pass the data evenly between
layers. We will not go with that approach here. Instead, we will ensure the entities are
immutable from the outside layers.

Sign In and Sign Out Mechanism
For starters, let's begin with our Sign In and Sign Out mechanism. We need a User entity for that. So far we haven't
created one. Let's create it.

Follow these steps to begin working with our Sign In and Sign Out mechanism:

1. Use the following code:

Go to https://goo.gl/cD8tDQ to access the code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Security.Cryptography;
using System.Text;
namespace RestBuy.Entities
{
 public class User : BaseEntity
 {
...
...
 }
}

The interesting thing is that we have defined a hash password algorithm. We also make use of a secret salt.
This way, even if our database for passwords is breached, our user passwords will not be easily recovered
(of course combined with a strong password policy). By using salt, in this case secretBytes and a username,
we achieve two things:

Even if different users have same password, their hashed password values will be different since we
include their
username.
We also added a secret keyword directly in the code file, so it will make existing rainbow tables nullified
if somebody wants to crack the hash by brute force. We made it a static method because it is more like a
utility:

2. Update our RestBuyContext by adding the following code:

Go to https://goo.gl/wWvhiL to access the code.

void ConfigureUser(EntityTypeBuilder <User> builder)
{
 builder.ToTable(userTable);
 builder.HasKey(ci => ci.Id);
 builder.Property(ci => ci.UserName)
 .IsRequired()
 .HasMaxLength(50);
 builder.Property(ci => ci.Password)
 .IsRequired();
}

Our class now looks like this:

Go to https://goo.gl/CjSv8g to access the code.

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata.Builders;
using RestBuy.Entities;
using System;
using System.Collections.Generic;
using System.Text;
namespace RestBuy.Infrastructure.EF
{
 public class RestBuyContext : DbContext
 {
...

https://goo.gl/cD8tDQ
https://goo.gl/wWvhiL
https://goo.gl/CjSv8g

...
 }
}

3. Finally, we add the migration by using Add-Migration User in the package manager console:

Do not forget to change the default project to Infrastructure; otherwise, you will get an error.

4. Then we finally update our database:

PM> Update-Database
Microsoft.AspNetCore.DataProtection.KeyManagement.XmlKeyManager[0]
User profile is available. Using 'C:\Users\Onur.Gumus\AppData\Local\ASP.NET\DataProtection-Keys' as key repository and
Applying migration '20170909141639_User'.
Done.
PM>

Creating the Application Layer
For the application layer, we need to create another project.

Follow these steps to start creating the application layer:

1. Create another project, as follows:

This project will contain the application service as well as the necessary interfaces required for the external
world.

2. We add the reference of RestBuy to RestBuy.Application, as follows:

3. Next, we will start to define our interfaces. For starters, let's define an IQuery<T> interface in
Services/Queries (create these folders if they don't exist) folder in the RestBuy.Application project
as follows:

Go to https://goo.gl/K9QpWN to access the code.

using RestBuy.Entities;
using System;
using System.Linq.Expressions;
namespace RestBuy.Application.Services.Queries
{
 public interface IQuery<T> where T : BaseEntity
 {
 Expression<Func<T, bool>> Criteria { get; }
 int Take { get; }
...
...
 int Skip { get; }
 }
}

4. Add a default implementation in BaseQuery, as shown:

Go to https://goo.gl/HNHd9k to access the code.

using RestBuy.Entities;
using System;
using System.Collections.Generic;
using System.Linq.Expressions;
using System.Text;
namespace RestBuy.Application.Services.Queries
{
 public abstract class BaseQuery<T> : IQuery<T> where T: BaseEntity
...
...
}
We will use this interface to query our repositories. The Take property represents how many items we want to take
from the database and Skip is used for setting how many items to skip. These properties are used for the paging of

https://goo.gl/K9QpWN
https://goo.gl/HNHd9k

the records. We will also define a lambda expression that denotes the filtering.

5. Next, define the base repo for all entities in the Repos folder (again create it if it doesn't exist)
of the RestBuy.Application project:

Go to https://goo.gl/nzouBU to access the code.

using RestBuy.Entities;
using System;
using System.Collections.Generic;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using RestBuy.Application.Services.Queries;
namespace RestBuy.Application.Repos
{
 public interface IEntityRepo<T> where T : BaseEntity
 {
 Task<T> GetById(int id, CancellationToken cancellationToken = default);
 Task<List<T>> ListAsync(IQuery<T> query = null, CancellationToken cancellationToken = default);
 }
}

When using default keyword, the IDE will warn you if you want to use the latest version of C#. Comply to it.

We are using Task because most database operations are asynchronous and cancellable
(indeed, most IO operations are).

6. Then, we define our IUserRepo interface as follows:

Go to https://goo.gl/Uykbex to access the code.

using RestBuy.Entities;
using System.Threading;
using System.Threading.Tasks;
namespace RestBuy.Application.Repos
{
 public interface IUserRepo : IEntityRepo<User>
 {
 Task AddAsync(User user, CancellationToken ct = default());
 }
}

We have only defined an Add method here, because for the time being we only plan to add
users. Depending on our needs, we can then modify this interface.

7. Finally, we define an IUoW interface, which stands for Unit of Work, as follows:

Go to https://goo.gl/ePL5Fc to access the code.

using System.Threading;
using System.Threading.Tasks;
namespace RestBuy.Application.Repos
{
 public interface IUoW
 {
 Task SaveChangesAsync(CancellationToken cancellationToken = default);
 }
}

UoW represents a database transaction.

https://goo.gl/nzouBU
https://goo.gl/Uykbex
https://goo.gl/ePL5Fc

Next, let's do the implementations in the Infrastructure project.

Performing Implementations in the
Infrastructure Project
Follow these steps to perform implementations in the Infrastructure project:

1. We first add a reference to our Application project from Infrastructure:

2. Then we implement our interfaces, starting with IUoW in the EF folder
of the Infrastructure project:

Go to https://goo.gl/SFBMLt to access the code.

using RestBuy.Application.Repos;
using System.Threading;
using System.Threading.Tasks;
namespace RestBuy.Infrastructure.EF

https://goo.gl/SFBMLt

{
 public class RestBuyUoW : IUoW
 {
...
...
 }
}

3. Next, define a BaseRepo that will be the base class for all our repository
implementations:

Go to https://goo.gl/s7LVBU to access the code.

using Microsoft.EntityFrameworkCore;
using RestBuy.Application.Repos;
using RestBuy.Application.Services.Queries;
using RestBuy.Entities;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
namespace RestBuy.Infrastructure.EF
{
...
 if (query.Skip > 0)
 {
 filterQuery = filterQuery.Skip(query.Skip);
 }
 if (query.Take > 0)
 {
 filterQuery = filterQuery.Take(query.Take);
 }
 if (query.OrderBy != null || query.OrderByDescending != null)
...
}

The preceding code basically checks if the query has to do with
either Take, Skip, or OrderBy clauses, and modifies the query accordingly
(depending on these parts of queries defined).

4. Now, define the UserRepo:

Go to https://goo.gl/9wPekN to access the code.

using RestBuy.Application.Repos;
using RestBuy.Entities;
using System.Threading;
using System.Threading.Tasks;
namespace RestBuy.Infrastructure.EF
{
 public class UserRepo : BaseRepo<User> , IUserRepo
 {
 public UserRepo(RestBuyContext restBuyContext) : base(restBuyContext)

https://goo.gl/s7LVBU
https://goo.gl/9wPekN

 { }
 public Task AddAsync(User user, CancellationToken ct = default) =>
 this.restBuyContext.Users.AddAsync(user, ct);
 }
}

Our EF folder looks as follows:

Finally, we need to define our service interfaces. We will start with user
registration. For starters, let's define our ViewModel for registration. We will
define the ViewModel directly in the application layer as this will be the
input of our service interfaces. Normally in onion layered architecture, we
try not to pass data across the layer borders. That's why we are not directly
using the entities. One notable exception to this rule is persistence. Since the
persistence layer is responsible only for persisting entities, there is no harm
passing the entities directly there. Still, this is a hotly debated subject.

Defining our ViewModel for Registration
Follow these steps to define our ViewModel for registration:

1. Let's create a ViewModels folder in the RestBuy.Application project and add a class called
NewUserViewModel:

2. Use this code inside NewUserViewModel:

Go to https://goo.gl/ATiDPz to access the code.

using RestBuy.Entities;
using System.ComponentModel.DataAnnotations;
namespace RestBuy.Application.ViewModels
{
 public class NewUserViewModel
 {
 [Required, MaxLength(50)]
 public string Username { get; set; }
 [Required, DataType(DataType.Password)]
 public string Password { get; set; }
 [DataType(DataType.Password), Compare
 (nameof(Password))]
 public string ConfirmPassword { get; set; }
 internal User CreateUser() =>
 new User(this.Username, this.Password);
 }
}

Make sure you add System.ComponentModel.DataAnnotations.dll from the Assemblies Framework section of the
Add References popup.

Note the CreateUser model. This method builds a User object from the ViewModel.
Alternatively, we could have used a factory pattern. Note that we marked the

https://goo.gl/ATiDPz

method internal. That is for when we don't want these kinds of factory methods
called from other layers.

3. Create the Services folder to host our services and define IRegistrationService:

4. Have this code inside IRegistrationService:

Go to https://goo.gl/wNEq3F to access the code.

using RestBuy.Application.ViewModels;
using System.Threading;
using System.Threading.Tasks;
namespace RestBuy.Application.Services
{
 public interface IRegistrationService
 {
 Task RegisterUser(NewUserViewModel newUserViewModel, CancellationToken token = default);
 }
}

5. Next, add the reference of our application project to the web project:

https://goo.gl/wNEq3F

Finally, we can start defining our controllers. For starters, let's define our Accounts
controller. You can delete the existing HomeController.

Defining our Controllers
Follow these steps to define our controllers:

1. Create a new controller in the Controllers folder by right-clicking on the
Controllers folder, adding a new item, and then selecting the MVC
controller class:

And our Web project looks as follows:

2. As for RESTful practices, when a GET request comes to our Accounts
controller, we will return a registration form. Use this code:

using Microsoft.AspNetCore.Mvc;
namespace RestBuy.Web.Controllers
{
 [Route("[controller]")]
 public class AccountsController : Controller
 {
 [HttpGet]
 public IActionResult RegistrationForm()
 {

 return View();
 }
 }
}

3. Define our view:

4. Add the following code into it:

Go to https://goo.gl/SvE6Qv to access the code.

@model RestBuy.Application.ViewModels.NewUserViewModel
@{
 ViewBag.Title = "Register";
}
<h1>Register</h1>
<form method="post" >
 <div asp-validation-summary="ModelOnly"></div>
...
...
 <div>
 <input type="submit" value="Register" />
 </div>
</form>

We have not specified any path for posting in our form, because we will post to the same
URL as with this page.

Now if we run our application and try to visit our AccXounts page
from http://localhost:49163/Accounts (your port number might be
different), we will end up with the following form:

Obviously, the form doesn't look aligned but that's something we will fix
later.

We also need a landing page when the registration is successful.

https://goo.gl/SvE6Qv
https://goo.gl/SvE6Qv

Creating the Post-Registration
Landing Page
Follow these steps to create the post-registration landing page:

1. We could use the same form page, but in this case, we will create
SuccesfullyRegistered.cshtml in the Accounts folder, as follows:

2. Use the following code:

@{
 ViewBag.Title = "Registration Successful";
}
<h1>You have registered successfully!</h1>

 <a asp-action="" asp-controller="">Home
 <a asp-action="" asp-controller="">Login

3. In the preceding code, we will fill in the necessary action and controller
fields later. Although this page is simplistic, for the purpose of this
demo, it is acceptable for the time being. The final step is to revise our
controller, as follows:

using Microsoft.AspNetCore.Mvc;
using RestBuy.Application.Services;
using RestBuy.Application.ViewModels;
using System.Threading;
using System.Threading.Tasks;
namespace RestBuy.Web.Controllers
{
 [Route("[controller]")]
...
...
}

We have added our IRegistrationService to the constructor. Our service will
simply be injected by ASP.NET runtime once we have registered it against a
concrete service, which we haven't written yet.

Secondly, we have defined a Register method that gets the ViewModel and a
cancellation token. The cancellation token is entirely optional here.
ASP.NET runtime has a smart behavior: whenever the HTTP request is
aborted from the client side, it will trigger the cancellation token. Generally,
it is recommended to pass the cancellation tokens for any I/O call. In this
case, we will query the database, but feel free to skip it if you find this
approach too verbose. Next, we will check whether our ViewModel is valid
or not.

Remember that we have decorated our view model with few attributes. At the model
binding phase, ASP.NET Runtime automatically validates our model and sets the model
state accordingly. If our model is valid, then we proceed with the registration by calling
the registration service and returning the view.

If our view is not valid, we will show the very same form page along with its
validation errors, which are automatically displayed.

At this point, we recommend you write a unit test against the controller to
verify the behavior, but we will skip that and directly implement our
registration service. Our registration service has to check whether such a
user exists in the database. So, let's first create a query for it, which will get
implemented from IQuery<User>.

Creating a Query for the
Registration Service
We create query objects instead of using linq because these kinds of queries
are associated with the business logic, and wrapping queries into objects
allows us to reuse them as well as unit test them. Also, naming them with a
class gives us more clues about the purpose of the query rather than on-the-
fly queries.

Follow these steps to create a query for the registration service:

In the Queries folder of the Application project, we create a UserExistsQuery
class, as follows:

Go to https://goo.gl/3r92QU to access the code.

using RestBuy.Entities;
using System;
using System.Linq.Expressions;
namespace RestBuy.Application.Services.Queries
{
 class UserExistsQuery : BaseQuery<User>
 {
 public UserExistsQuery(string userName) =>
 this.UserName = userName;
 public string UserName { get; }
 public override Expression<Func<User, bool>>
 Criteria =>
 u => u.UserName == this.UserName;
 public override int Take => 1;
 }
}

Basically, this query object searches for a user with a given username, and
attempts to take the first record by setting Take = 1.

Remember, one of the goals of software engineering is to have readable and
understandable code. Short code doesn't always mean good code. So whenever
necessary, feel free to create new classes and name them properly.

https://goo.gl/3r92QU

Validating the Registration
Follow these steps to validate the registration:

1. We do our service implementations in Services/Core folder. Our service implementation is as follows:

Go to https://goo.gl/Xxv3kj to access the code.

using RestBuy.Application.ViewModels;
using RestBuy.Application.Repos;
using RestBuy.Application.Services.Queries;
using System.ComponentModel.DataAnnotations;
using System.Threading;
using System.Threading.Tasks;
using RestBuy.Application.Services;
namespace Restbuy.Application.Services.Core
{
 public class RestBuyRegistrationService : IRegistrationService
 {
 readonly IUserRepo userRepo;
 readonly IUoW uow;
...
...
 }
}

At the constructor, our Unit of Work is injected. Then we fulfil our interface contract. By using
validation context, we validate our view model once more. Although we will validate the view model
in the controller, the application is not (and should not be) aware.

As a security practice, inner layers should not trust upper layers when it comes to data validation.

2. Since we are throwing a validation exception from our application layer, our controller should handle
and show a validation message with respect to that. We revise our register method as follows:

Go to https://goo.gl/KWuyPd to access the code.

[HttpPost]
public async Task<IActionResult> Register(NewUserViewModel newUserViewModel, CancellationToken cancellationToken)
{
 if (ModelState.IsValid)
 {
...
...
 }
 return View(nameof(RegistrationForm));
}

Don't forget to add using System.ComponentModel.DataAnnotations; at the beginning of the file.

In case a validation error occurs, we will show it in the registration page.

3. Then, we invoke our user exists query and get the users with the same name. If a username already
exists, our userList will have a count greater than 0 (it will be actually 1 since we know our query makes
use of Take = 1). In that case, we need to reject the registration. Otherwise we register the user by getting
UserRepo from the UoW, add it to the user repo, and commit the changes by calling SaveChangesAsync.

There may be trouble if two requests come with the same username registration request. Although this is a tiny possibility, a
malicious user can try to break our data.

Our current code doesn't check these parallel requests and doesn't have to. For these kind of requests,
we should put a unique constraint in the database. Database constraints are your last line of defense.

https://goo.gl/Xxv3kj
https://goo.gl/KWuyPd

Because the odds are tiny for such a thing to happen (except for the malicious user case), your unique
constraint will fail and you will show an error page telling the user a problem occurred and they
should retry the operation. So our next step will be to add our unique index to the Username property.

4. Add the unique index to the UserName property by modifying the ConfigureUser method of the RestBuyContext,
as follows:

Go to https://goo.gl/Ncc42w to access the code.

void ConfigureUser(EntityTypeBuilder<User> builder)
{
 builder.ToTable(userTable);
 builder.HasKey(ci => ci.Id);
 builder.Property(ci => ci.UserName)
 .IsRequired()
 .HasMaxLength(50);
 builder.HasIndex(c => c.UserName).IsUnique();
 builder.Property(ci => ci.Password)
 .IsRequired();
}

Note that we have added the HasIndex method.

5. Now, we need to upgrade our migrations and database by executing the following commands in the
package manager console:

Add-Migration AddUsernameIndex
Update-Database

Make sure you select RestBuy.Infrastructure before running the commands from the default project combobox.

Our application project now looks as follows:

6. Lastly, we need to create our service registrations. Since we have used interfaces and their
implementations, we will associate these interfaces with their implementations with the built-in
dependency injection mechanism. In the web project, we will update the ConfigureServices method in
Startup.cs, as follows:

Go to https://goo.gl/NJ2zvC to access the code.

public void ConfigureServices(IServiceCollection services)
{
 services.AddEntityFrameworkSqlServer()
 .AddDbContext<RestBuyContext>(options =>
 options.UseSqlServer(Configuration.
 GetConnectionString("DefaultConnection")));
 services.AddScoped<IRegistrationService,

https://goo.gl/Ncc42w
https://goo.gl/NJ2zvC

 RestBuyRegistrationService>();
 services.AddScoped<IUoW, RestBuyUoW>();
 services.AddScoped<IUserRepo, UserRepo>();
 services.AddMvc();
}

So, we make three registrations: IRegistrationService to DefaultRegistrationService, IUoW to RestBuyUoW, and
IUserRepo to UserRepo. We used the scope approach so that only one instance of these services is created
per request. And they will be disposed of at the end of each request.

7. Next let's set up our connection string. We edit appsettings.json in the Web project:

Go to https://goo.gl/zTgTcc to access the code.

{
 "ConnectionStrings":
 {
 "DefaultConnection": "Server=(localdb)\\
 mssqllocaldb;Database=RestBuy;Trusted_
 Connection=True;MultipleActiveResultSets=true"
 },
 "Logging":
 {
 "IncludeScopes": false,
 "LogLevel":
 {
 "Default": "Warning"
 }
 }
}

Now we can run our application. We should visit the /Accounts page to see the registration form:

https://goo.gl/zTgTcc

After the registration is successful, we are redirected to the Registration Successful page:

And if we check our database, we can see our user has been inserted, as shown here:

Creating a Unit Test
In the last decade unit tests have become popular. But many times, the true
goal of unit tests are not well understood, perhaps due to the naming. It's
true that unit tests are very helpful in terms of finding bugs in our software.

It is useful to write unit test even if you have a function with a small
amount of code. The reason is although unit tests are for hunting bugs there
is one category of bugs they are primarily helpful for finding. That is
regression. Regression usually happens through the breakage of existing
functionality as we add new code.

With regard to regression, a unit tests acts like a fusebox. It will ensure that
if we break existing functionality without realising, the older tests start to
fail. And if they don't, the programmer will feel comfortable as he or she
would know that it is unlikely that existing functionality is broken.
Although unit tests do not guarantee this kind of safety, it is an invaluable
asset if you constantly add to or change your code. Many people treat unit
tests as a specification of the application written in code. There's no denying
that test-driven development has recently evolved into behavior-driven
development, where developers start writing the formal specs of the
application as a unit test.

Writing a Unit Test
Follow these steps to write a unit test for our application:

1. Let's create a unit test. Let's name it RestBuy.Test, as shown in the
following screenshot:

2. Rename UnitTest1.cs to EFTest and copy appsettings.json from your web
project to the test project. But change the database name to RestBuy_Test.

Make sure you add references to all other projects from Test. You also need a reference
to Microsoft.EntityFramework.Core, and then install Microsoft.Extensions.Configuration from
NuGet.

Your project should look as shown here:

3. Now, ensure your appsettings.json file resembles this:

{
 "ConnectionStrings":
 {
 "DefaultConnection": "Server=(localdb)\\mssqllocaldb;
 Database=RestBuy_Test;Trusted_Connection=True;
 MultipleActiveResultSets=true"
 },
 "Logging":
 {
 "IncludeScopes": false,
 "LogLevel":
 {
 "Default": "Warning"
 }
 }
}

4. Right-click on the appsettings.json file from Properties ensure it is
deployed to the output folder by selecting Copy if newer for the Copy
to Output Directory option:

5. Ensure your EFTest file also resembles this:

Go to https://goo.gl/NK99He to access the code.

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using RestBuy.Entities;
using RestBuy.Infrastructure.EF;
using System.IO;
using System.Threading.Tasks;
namespace RestBuy.Test
{
...
...
}

This test basically creates our database, saves a product to the database in
one context, then queries it in another context and commits it.

https://goo.gl/NK99He

Running the Unit Test
Follow these steps to run the unit test:

1. Now, to run the test, build the solution first and open Test Explorer
from the Test menu as shown here:

2. Then right-click on the test and run it:

This concludes our basic model creation.

Activity: Writing a Unit Test for
Deletion
Scenario

Write a unit test that tests deletion of a product.

Steps for completion

1. We can refactor our test as follows:

Go to https://goo.gl/EUCb5B to access the code.

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using RestBuy.Entities;
using RestBuy.Infrastructure.EF;
using System.IO;
using System.Threading.Tasks;
namespace RestBuy.Test
{
 [TestClass]
 public class EFTest
 {
...
...
 }
}

2. Now to run the test, build the solution first and open Test Explorer
from the Test menu as shown here:

https://goo.gl/EUCb5B

3. Then right-click on the test and run it:

Upgrading Our Project to Bootstrap 4
In newer versions of Visual Studio, Bower has been removed. We'll look at upgrading our project to Bootstrap
manually. If you are using ASP.NET Core 2.2 or newer, you may not have to do the following steps as these newer
versions come with Bootstrap 4.

Follow these steps to our project to Bootstrap:

1. Open _Layout.cshtml. Update your script references, as follows:

Go to https://goo.gl/GtuEk7 to access the code.

<!DOCTYPE html>
<html>
<head>
...
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta.3/css/bootstrap.min.css" integrity="s
M6BdEfwnCJZtKxi1KgxUyJq13dy" crossorigin="anonymous">
...
</body>
</html>

Note that we should add popper as a UMD module and before bootstrap in the script sections. Also, we
added the ValidationScriptsPartial page. That file is generated by the Visual Studio template and includes the
client-side validation code that is necessary.

2. Inside the ValidationScriptsPartial.cshtml file, we make the following changes so that it adds relevant Bootstrap
styles in case of failures:

Go to https://goo.gl/xud8jd to access the code.

<environment include="Development">
 <script src="~/lib/jquery-validation/dist/jquery.validate.js"></script>
 <script src="~/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.js"></script>
</environment>
...
...
</script>

3. Next, we revise the registration form with Bootstrap:

Go to https://goo.gl/ad7JYA to access the code.

@model Restbuy.Application.ViewModels.NewUserViewModel
@{
ViewBag.Title = "Register";
}
<h1>Register</h1>
<form method="post">
 <div asp-validation-summary="ModelOnly"></div>
 <div class="form-group">
...
...
</form>

This is what will show up on your screen:

https://goo.gl/GtuEk7
https://goo.gl/xud8jd
https://goo.gl/ad7JYA

Our form now looks much better in the /Accounts URL.

4. Now let's click on the Register button.

That looks good, but our password field looks green, as if it is valid. The reason it is green is that we forgot
to add the Required property to our ViewModel the ConfirmPassword field.

5. Update NewUserViewModel:

Go to https://goo.gl/7YN6ke to access the code.

using RestBuy.Entities;
using System.ComponentModel.DataAnnotations;
namespace RestBuy.Application.ViewModels
{
 public class NewUserViewModel
 {
 [Required, MaxLength(50)]
...
...
 }
}

6. After that, run our page again:

https://goo.gl/7YN6ke

This time we successfully see three red boxes. Note that even if we disable the JavaScript validation, our
form is still guarded from the server side. It's just that in this case we won't see these red lines as they are
generated by JavaScript. Also note that errors occurring if the same user exists cannot be easily covered by
client-side validation. Instead, we will utilize
ValidationTagHelper.

7. Add a TagHelpers folder to your Web project and create the ValidationClassTagHelper class, as follows:

Go to https://goo.gl/3CBcBe to access the code.

using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc.TagHelpers;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;
using System.Linq;
namespace RestBuy.Web.TagHelpers
{
...
...
}

The preceding class simply sets the appropriate Bootstrap class depending on the value's validity.

8. Change your ViewImports.chtml file in the Views folder as follows:

@using RestBuy.Web
@using RestBuy.Web.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper *, RestBuy.Web

9. Change RegistrationForm.cshtml, as follows:

Go to https://goo.gl/TGhPzF to access the code.

@model RestBuy.Application.ViewModels.NewUserViewModel
@{
 ViewBag.Title = "Register";
}
<h1>Register</h1>
...
...
</form>

Note that we added the bootrap-validation attribute to the input fields.

10. All is well; now, we have to cover on caveat. The password fields will be emptied on an invalid post by the
ASP.NET runtime. But if we leave them as it is, they will also appear green despite the fact they are empty.
So we want to mark those password field validation steps as skipped if they are valid. This is so that they will
never look green and empty. To do this, we change our controller method as follows:

Go to https://goo.gl/PpWxDY to access the code.

[HttpPost]
public async Task<IActionResult> Register(
NewUserViewModel newUserViewModel,
CancellationToken cancellationToken)
{
 if (ModelState.IsValid)
 {
 try
...
...
 }
 return View(nameof(RegistrationForm));
}

Make sure you add using Microsoft.AspNetCore.Mvc.ModelBinding; at the top of the file.

11. Now, if we try to register with an existing user, we get this:

https://goo.gl/3CBcBe
https://goo.gl/TGhPzF
https://goo.gl/PpWxDY

12. Finally, we utilize Bootstrap for the successful registration in the SuccessfullyRegistered page, by using this
code:

Go to https://goo.gl/C9F1nz to access the code.

@{
 ViewBag.Title = "Registration Successful";
}
<div class="alert alert-success" role="alert">
 <h4 class="alertheading">You have registered successfully!!</h4>
</div>
<ul class="nav">
 <li class="nav-item">
 Home

 <li class="nav-item">
 Login

Now, our SuccessfullyRegistered page manifests itself as follows:

We should write unit tests to prevent regression. As of now, Bower has been deprecated and using NPM is recommended.
We can style our application and even style the validation. We can style our application and even style the validation using
Bootstrap.

https://goo.gl/C9F1nz

Activity: Adding a EULA
Agreement
Scenario

You want to add an end user license agreement (EULA) to prevent user to
register without checking it.

Aim

Add an end-user license agreement to the application

Steps for completion

1. Modify NewUserViewModel, as follows:

Go to https://goo.gl/nKcvUq to access the code.

using RestBuy.Entities;
using System.ComponentModel.DataAnnotations;
namespace RestBuy.Application.ViewModels
{
...
 public bool TermsAndConditions { get; set; }
 internal User CreateUser() =>
 new User(this.Username, this.Password);
 }
}

Note that we have added a TermsAndConditions validator with a range
validator that can only be true.

2. Then modify the registration page as follows:

Go to https://goo.gl/uUxNau to access the code.

@model RestBuy.Application.ViewModels.NewUserViewModel
@{
 ViewBag.Title = "Register";
}

https://goo.gl/nKcvUq
https://goo.gl/nKcvUq
https://goo.gl/uUxNau

<h1>Register</h1>
...
...
 <input class="btn btn-primary" type="submit" value="Register" />
 </div>
</form>

3. To the bottom of the _ValidationScriptsPartial file, add the following:

Go to https://goo.gl/P6GBey to access the code.

<script>
// extend jquery range validator to work for required checkboxes
var defaultRangeValidator = $.validator.methods.range;
$.validator.methods.range = function (value, element, param)
{
 if (element.type === 'checkbox')
 {
 // if it's a checkbox return true if it is checked
 return element.checked;
 }
 else
 {
 // otherwise run the default validation function
 return defaultRangeValidator.call(this, value, element, param);
 }
}
</script>

Now our form looks as follows:

https://goo.gl/P6GBey

Deploying RestBuy to Azure
Microsoft Azure is a cloud computing platform and infrastructure from
Microsoft for building, deploying, and managing applications and services.
It supports different programming languages and arrays of services.

You can deploy your application in any server with Internet Information
Service (IIS) in your network. But this restricts your application to being
accessed only from within your network, assuming your server could only
be accessed from within your
network (as in most network setups). In this section, we are going to deploy
the ASP.NET Core application in Microsoft Azure so that your users across
the globe can access your application.

Signing up to Microsoft Azure
In order for your application to be deployed to Azure, you need to have an
account with Azure. You can create an Azure account for free and you'll
have sufficient credits to deploy your application for free within the first 30
days (https://azure.microsoft.com/).

To sign up perform the following steps:

1. Go to https://azure.microsoft.com/. You'll see this page on your screen:
2. Click on the Start free button or FREE ACCOUNT link (at the top

right-hand corner of the page):
3. You'll be redirected to the following page. Enter your Microsoft

account credentials and click on the Sign In button. If you don't have a
Microsoft account, you can create one by clicking on the Sign Up now
link at the bottom of the page:

These pages may appear differently than what's shown in the screenshots because of
regular Microsoft updates, but the actions you should take are the same.

4. Once you have signed-in, you will be asked for details about your
country, first name, second name, and your work phone, as follows:

5. Once you have entered all the necessary details, you will be asked for
your country code and phone number so that Azure can text you or call
you to verify you are a real person and not a robot. If you choose the
option of text me, you will get a code to your mobile phone; you need
to enter it in the last field and click on Verify Code.

6. Once you have been verified by phone, you need to enter your credit
card information in the following form. You'll be billed for
approximately $1 and it will be refunded within five to six business
days back to your account. This information is collected to identify the
user's identity and the user will not be billed unless the user explicitly
opted for the paid service.

7. Once you enter your credit card information and click on Next, you
will have to agree to the subscription agreement as the final step in the

https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/

sign-up process.
8. Once the sign-up process completes, you'll be shown the following

screen. You'll also get a confirmation e-mail (to the e-mail ID that you
gave in the first step) with the subscription details:

Prerequisites to Azure Deployment
In order to publish the ASP.NET Core application to Azure from the Visual
Studio 2017 Community Edition, perform the following steps:

1. Start Visual Studio Installer as shown here:
2. And then your selections should look like the following:
3. Then you click on the Modify button at the bottom right and your

download starts.

Now let's publish Rest Buy to Azure. One thing we should be careful is that
we have database migrations to run. Normally by default if we had our
migrations defined in the web project, then the wizard automatically asks if
we want to generate the migrations as well. However, we have defined our
migrations within the Infrastructure project. In this case we have to add some
code so that whenever our application accesses RestBuyContext it will generate
the migrations if there is any.

Deploying Rest Buy to Azure
Follow these steps to deploy Rest Buy to Azure:

1. Alter our RestBuyContext, as follows:

public class RestBuyContext : DbContext
{
 const string hiloName = "order_hilo";
 const string productTable = "Product";
 const string orderTable = "Order";
 const string orderItemTable = "OrderItem";
 const string userTable = "User";
 static bool initialized;
...
...
}
/// rest of the code remains the same

Basically in the code, we added a static initialized property that is
called only the very first time when our constructor is invoked. We
don't want to check if migrations are applied each time we create
our context; rather we want it once per application start. The
Database.Migrate() method ensures that necessary migrations are
applied. Once we have defined this, we can proceed with our
publishing as usual.

2. Right-click on the Web project from the solution explorer and select
Publish. You will get the following screen:

3. From Services, create a new database for our application as shown in
the following screenshot by clicking on the plus sign and filling the
necessary form items, as shown:

4. After filling the preceding form and clicking on Create, click on
Settings in the Publish pane. Select the DefaultConnection checkbox,
(Note that it may take few seconds for this checkbox to appear.) as
shown:

5. Click on Save and then click on Publish. Doing so will publish our
application and run it. This is the screen for registration:

6. Clicking on Register will yield this:

Summary
We've looked into implementing the registration feature. We created a unit
test for it. We upgraded our project to Bootstrap 4. Finally, we deployed our
application to Microsoft Azure. Well done! We've completed this course
successfully.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

Learning ASP.NET Core 2.0
ASP.NET Core 2 and Vue.js

ISBN: 9781-78883-946-4

Setup a modern development environment for building both client-side
and server-side code
Use Vue CLI to scaffold front-end applications
Build and compose a set of Vue.js components
Setup and configure client-side routing to introduce multiple pages
into a SPA
Integrate popular CSS frameworks with Vue.js to build a product
catalogue
Build a functioning shopping cart that persists its contents across
browser sessions
Build client-side forms with immediate validation feedback using an
open-source library dedicated to Vue.js form validation

Refactor backend application to use the OpenIddict library

Mastering ASP.NET Core 2.0
Ricardo Peres

ISBN: 978-1-78728-3688

Get to know the new features of ASP.NET Core 2.0
Find out how to configure ASP.NET Core
Configure routes to access ASP.NET Core resources
Create controllers and action methods and see how to maintain the
state
Create views to display contents
Implement and validate forms and retrieve information from them
Write reusable modules for ASP.NET Core
Deploy ASP.NET Core to other environments

Leave a review - let other readers
know what you think
Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital
so that other potential readers can see and use your unbiased opinion to
make purchasing decisions, we can understand what our customers think
about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of
your time, but is valuable to other potential customers, our authors, and
Packt. Thank you!

	Title Page
	Copyright and Credits
	ASP.NET Core 2 Fundamentals

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the authors
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	Setting the Stage
	Introduction to Web Applications
	How Web Applications Work
	What is the HTTP Protocol?
	HTTP/2's Edge over HTTP/1.x
	Request-Response Pattern
	Stateless Nature of HTTP
	Advantages to HTTP
	Work with the Statelessness and the Request-Response Pattern

	Client Side and Server Side
	Programming Styles – RPC versus REST
	Working with HTTP Methods
	The GET Method
	The POST Method
	List of Important Methods
	Other Methods

	Activity: Working with the Request-Response Pattern

	Introduction to ASP.NET
	ASP.NET MVC
	The Model-View-Controller Pattern

	A File-Based Project
	Creating Your First Project

	Creating Your First Application

	Summary

	Controllers
	Role of the Controller in ASP.NET MVC Applications
	Ideal Flow of Data for a Layered Web Application

	Introduction to Routing
	Activity: Finding the Correct Method Invoked for a URL

	Installing the ASP.NET Core NuGet Package in Your Application
	Our First Controller
	IActionResult
	Activity: Implementing Your Own IActionResult

	Adding Views
	Adding Models
	Passing Data from the Controller to the View
	Filters
	Activity: Writing a Custom Filter

	Summary

	Views
	The View Engine and the Razor View Engine
	The Razor View Engine
	Programming in the Razor View Engine
	Variables in the Razor View
	Working with Razor View
	Programming Constructs in the Razor View

	Activity: Printing Prime Numbers from 1 to 100

	Layout
	Building our First Layout
	Creating _ViewStart.cshtml
	Creating _Layout.cshtml
	Adding a Page-Specific View

	Activity: Creating Another Layout and Changing the View to That Layout

	Generating HTML
	Generating HTML using a Simple Form
	HTML Helpers
	Generating a form using HTML Helpers

	Activity: Making Use of a Checkbox

	Partial View
	Calling a Partial View
	Activity: Working with Static Data

	View Components
	Creating a View Component
	Creating a ViewComponent Attribute
	Activity: Passing a String as Additional Data

	Tag Helpers
	Custom Tag Helpers
	Creating a Custom Tag Helper
	Activity: Replacing Email Tag Helpers

	Summary

	Models
	Introduction to Models
	Creating an ASP.NET Core Application
	Models Specific to a View Component
	ViewModels

	Data Flow with Respect to a Model
	Activity: Revising the Code to Show Discount in the Total

	Model Binding
	Entity Framework
	Creating Console Applications with Entity Framework
	Installing Entity Framework Core NuGet Package
	Using the NuGet Package Manager

	Installing Entity Framework Commands
	Creating Model Classes
	Creating the DbContext Class

	Creating a Migration
	How the SaveChanges Method Works

	Updating the Record
	Deleting the Record
	Activity: Controlling the Transaction Manually

	Using Entity Framework in ASP.NET MVC Applications
	Database Migration
	Summary

	Validation
	Introduction to Validation
	Client-Side and Server-Side Validation
	Server-Side Validation
	Updating ViewModels with the Data Annotation Attribute
	Updating the ViewModel to Display the Validation Error Message
	Updating the Controller Action Method to Verify the Model State
	Activity: Adding a New Validation Rule for Designation

	Client-Side Validation
	Performing Client-Side Validation
	Activity: Adding a New Validation Rule to a JavaScript Function

	Implementation
	Activity: Adding a New Validation Rule for Designation by Extending ValidationAttribute

	Summary

	Routing
	Convention-Based Routing
	Attribute-Based Routing
	Working on an Example of Attribute-Based Routing

	Route Attribute at the Controller Level
	Token Replacement in Route Templates
	Activity: Combining Route Templates that Begin with /
	Passing Routing Values in HTTP Action Verbs in the Controller
	Activity: Defining Two Actions with the Same Name with Different Verbs

	Route Constraints
	Activity: Creating an Attribute that Implements IActionConstraintFactory

	Summary

	Rest Buy
	Designing Rest Buy
	Features and Stories
	Layout and Pages
	Main Page
	Product Detail
	Checkout
	Checkout Success
	Previous Orders

	Defining our Domain and Model
	Creating a RestBuy Project
	Activity: Preparing Features and Stories for a Website
	Activity: Preparing Wireframe Diagrams for a Website
	Activity: Designing a Domain Model for a Website

	Creating the Entities
	Create EF Context and Migrations
	Create migrations
	Activity: Adding a Supplier Entity that Denotes the Supplier of a Product

	Summary

	Adding Features, Testing, and Deployment
	Adding the Registration Feature
	Sign In and Sign Out Mechanism
	Creating the Application Layer
	Performing Implementations in the Infrastructure Project
	Defining our ViewModel for Registration
	Defining our Controllers
	Creating the Post-Registration Landing Page
	Creating a Query for the Registration Service
	Validating the Registration

	Creating a Unit Test
	Writing a Unit Test
	Running the Unit Test
	Activity: Writing a Unit Test for Deletion

	Upgrading Our Project to Bootstrap 4
	Activity: Adding a EULA Agreement

	Deploying RestBuy to Azure
	Signing up to Microsoft Azure
	Prerequisites to Azure Deployment
	Deploying Rest Buy to Azure

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

